⚠申明: 未经许可,禁止以任何形式转载,若要引用,请标注链接地址。 全文共计3077字,阅读大概需要3分钟
🌈更多学习内容, 欢迎👏关注👀【文末】我的个人微信公众号:不懂开发的程序猿
⏰个人网站:https://jerry-jy.co/❗❗❗知识付费,🈲止白嫖,有需要请后台私信或【文末】个人微信公众号联系我
使用Tensorflow实现文本分类
使用Tensorflow实现文本分类
实验目录
1.使用Tensorflow实现文本分类
实验过程
1.使用Tensorflow实现文本分类
知识点
1)卷积神经网络CNN
2)文本分类
3)神经网络
实验目的
1)掌握使用Tensorflow实现文本分类的方法。
实验内容
1)使用Tensorflow实现文本分类
实验环境
1)Oracle Linux 7.4
2)Python 3.6
3)Tensorflow 2.1
4)nltk 3.4
5)matplotlib 3.1
实验步骤
1)打开Jupyter,并新建Python工程
1.桌面空白处右键,点击Konsole打开一个终端
2.切换至/experiment/jupyter目录
cd experiment/jupyter
3.启动Jupyter,root用户下运行需加’–allow-root’
jupyter notebook --ip=127.0.0.1 --allow-root
4.依次点击右上角的“新建”,Python 3新建python工程
5.点击“未命名”,在弹出框中修改标题名,点击重命名确认
2)导入所需库
1.输入代码后,使用shift+enter执行,下同。
2.导入实验所需库
import csv
import tensorflow as tf
import numpy as np
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from nltk.corpus import stopwords
import nltk
3)加载停用词
1.使用nltk加载停用词
nltk.download('stopwords')
STOPWORDS = set(stopwords.words('english'))
print(STOPWORDS)
4)定义超参数
1.定义超参数
vocab_size = 5000
embedding_dim = 64
max_length = 200
trunc_type = 'post'
padding_type = 'post'
oov_tok = '<OOV>'
training_portion = 0.8
返回的张量比输入多一个轴,嵌入向量沿新的最后一个轴对齐。
5)导入数据
1.读取新闻文章和标签,同时删除停用词
articles = []
labels = []
with open("/root/experiment/datas/bbc-text.csv", 'r') as csvfile:
reader = csv.reader(csvfile, delimiter=',')
ne