前言
再一次给你们植入思想钢印:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。
不要过度沉迷于什么高级模型、先进算法,数据质量好、特征提取到位,逻辑回归照样媲美深度学习,甚至吊打。
然而,现实是大家都在追求热点,单纯的逻辑回归发(灌水)不了好杂志,所以,都得学,都得会。
说了那么多,就是让你们重视数据收集、清洗和特征工程!!!
因此,怎么选择特征,选择什么特征来建模,已经上升到“工程”的高度,特征工程由此而来。它的目的在于最大限度地从原始数据中提取特征以供构建模型。
一、差异分析
这一步,让大家回到学习卫生统计学的苦逼岁月。还记得啥叫一类错误?t检验的使用条件是什么?方差分析的两两比较能用t检验么…
我们的例子是二分类的判别,所以是两组间的比较,还记得不:连续资料用的是t检验(正态分布)或者秩和检验(不满足t检验的要求),分类资料使用的是卡方检验。
(1)连续资料的差异分析
① t检验(应该叫独立样本t检验)
首先我们来看看t检验的适用前提条件:
A)为连续变量;
B)分为2组;
C)数值之间相互独立;
D)数值不存在显著的异常值;
E)数值在各组内接近正态分布;
F)两组的变量的方差相等。
嗯,确实限定条件很多的,所以独立样本t检验可不能无脑用。
我们来看下自己的数据:
A)首先特征I到R都是连续变量,这个OK;