检测分割算法改进(篇五) 引入Swin Transformer做检测网络Backbone

本文详细解析了Swin Transformer如何作为检测网络的Backbone,包括Patch Merging、Patch Partition、Linear Embedding、W-MSA和SW-MSA等关键模块,以及相对位置偏移的计算。通过Swin Transformer,网络能够在减少计算量的同时实现信息交互,适用于目标检测任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

检测算法通常包括Backbone、Neck、Head等结构,屠榜的Swin Transformer当然也是可以被作为Backbone的,如下图所示:

在撸代码之前,需要对Swin-Transformer的各个模块有清晰的了解,下面首先是对每个模块的解析及整个网络结构的前向原理。需要注意一点,在Swin Transformer中,Patch需要理解为多通道的像素,即feater map上的一个像素点包含所有通道的值,而非一个token。


Patch Merging

  • 该模块和YOLOX或Yolov5中的Fcous模块是大差小不差。存在于Stage2 ~ Stage4中,其作用主要是进行降采样,通过该模块后,feature map的会被shape降采样一倍,ch
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刚哥吧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值