Anchor free系列检测器之YOLOX源码逐行讲解篇(四)--coco数据载入及分布式训练

本文详细解析YOLOX模型中数据载入和预处理的代码,包括COCO数据集的解析和取样器的构建。强调了数据处理在模型训练中的重要性,并介绍了_get_data_loader方法、COCODataset类、_load_coco_annotations方法和pull_item方法的工作原理,以及如何根据is_distributed参数构建分布式训练的取样器。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

整个YOLOX源码的学习一定要按照以下顺序才能整体串起来:Backbone->FPN->Head->->数据读入源码->数据增强源码->loss计算源码->simOTA源码->demo.py脚本->train.py脚本。而该系列博文也遵循该顺序来逐行分析代码。注意是逐行,包括python语法,tensor维度和逐行代码的作用及应用。其实网络结构本没有任何神秘的地方,都是一些模块堆叠起来的,你完全可以没有任何理由的修改任何一个模块。看完这个系列后自己完全可以随便的去对任何网络结构做手脚,而不仅仅局限于一个调参者。

本篇讲的是YOLOX中数据加载及数据预处理部分。大家在学网络的时候总是侧重于模型结构的搭建,而忽略了数据的处理部分。这造成的后果就是对数据整体的变化没有一个准确的认知,直接就导致对最终loss计算含混不清。数据加载主要依靠两个东西:数据解析器:从本地加载标注文件和图像解析成网络需要的数据格式。取样器:每一个批次中完成随机取batchsize张图像的操作。


首先定位到yolox\exp\yolox_base.py的get_data_loader方法:

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刚哥吧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值