Anchor free系列检测器之YOLOX源码逐行讲解篇(五)--mosaic数据增强及数学理解

本文深入解析YOLOX检测器中mosaic数据增强的实现细节,包括opencv操作、图像拼接、仿射变换和标签修正。通过对get_mosaic_coordinate()和random_perspective()方法的逐行代码解释,理解mosaic增强如何提升模型训练效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

整个YOLOX源码的学习一定要按照以下顺序才能整体串起来:Backbone->FPN->Head->->数据读入源码->数据增强源码->loss计算源码->simOTA源码->demo.py脚本->train.py脚本。而该系列博文也遵循该顺序来逐行分析代码。注意是逐行,包括python语法,tensor维度和逐行代码的作用及应用。其实网络结构本没有任何神秘的地方,都是一些模块堆叠起来的,你完全可以没有任何理由的修改任何一个模块。看完这个系列后自己完全可以随便的去对任何网络结构做手脚,而不仅仅局限于一个调参者。

本篇讲的是YOLOX中的mosaic数据增强,大多还是opencv的操作。


下图就是一个mosaic增强后的效果图,可以看出:该图像由四张图像拼接且每张图像都有一定的仿射变换(旋转、平移、resize等)

### YOLOv5-7.0 源码逐行讲解 #### 项目目录结构解析 YOLOv5项目的文件夹和文件组织方式有助于理解整个框架的工作原理。主要组件分布在不同的子目录下,包括数据处理、模型定义、训练脚本以及推理工具等[^1]。 对于`models/`目录下的Python文件,这里包含了不同版本的YOLO网络架构实现。以`yolov5s.yaml`, `yolov5m.yaml`为例,这些配置文件描述了各个层的具体参数设置,如卷积核大小、通道数等信息。通过加载对应的`.yaml`文件可以实例化特定规模的YOLO检测器。 #### 推理过程详解 在`detect.py`中实现了基于预训练权重进行目标识别的功能。该脚本接收输入图像路径作为命令行参数,并调用`torch.hub.load()`函数来获取官方发布的YOLOv5模型对象。之后会执行前向传播操作得到预测框坐标及其类别概率分布情况。最后利用非极大值抑制算法筛选出最优边界框并绘制到原始图上显示出来[^2]。 ```python import torch from pathlib import Path def run(weights='yolov5s.pt', source='data/images', imgsz=640, conf_thres=0.25, iou_thres=0.45): device = 'cuda' if torch.cuda.is_available() else 'cpu' model = torch.hub.load('ultralytics/yolov5', 'custom', path_or_model=weights).to(device) results = model(source, size=imgsz) detections = non_max_suppression(results.pred[0], conf_thres, iou_thres)[0].cpu().numpy() ``` #### 验证阶段分析 验证集上的性能评估由位于根目录中的`val(test).py`负责完成。此程序读取测试样本列表后批量送入已训练好的神经网络计算损失值与精度指标。值得注意的是,在多GPU环境下能够显著加速这一过程,因为支持分布式DataLoader机制自动分配任务给各设备独立运行。 #### 数据增强技术探讨 为了提高泛化能力,数据扩充方法被广泛应用到了YOLO系列当中。“Mosaic Augmentation”就是其中一种创新策略,它随机选取四幅相邻的小片组合成一幅大尺寸的新样例供后续学习使用。而`datasets/loaders.py`里的`LoadImagesAndLabels`类则封装好了完整的采样逻辑,包括但不限于上述提到的马赛克效果生成部分[^3]。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刚哥吧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值