mmdetection小技巧(强烈推荐 逐步完善中)

本文分享了关于mmdetection框架的一系列实用技巧,包括配置文件引用、数据集路径设置、PyCharm中进行Debug、断点续训、学习率调整、模型复杂度计算、混淆矩阵生成、FPS测量以及FLOPS计算等,旨在帮助用户更好地理解和优化mmdetection模型训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 小技巧一:在mmdetection中所有的配置文件,都有这样一行代码,如果要做目标检测,则引用coco_detection.py,如果要做目标检测,则引用coco_instance.py。在训练Swin Transformer的时候,这里的修改尤为常见,具体看你需要做什么,这里我们是做目标检测。
    _base_ = [
        '../_base_/models/mask_rcnn_r50_fpn.py',
        '../_base_/datasets/coco_detection.py', 
        '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
    ]
  • 小技巧二:在coco_detection.py中,有一个参量data_root,该参量是存放我们数据集的路径。
    dataset_type = 'CocoDataset'
    data_root = 'data/coco/'
    img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
    <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刚哥吧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值