深度学习算法岗面试必备之深度可分离卷积

本文详细介绍了深度可分离卷积的工作原理,包括逐通道卷积(DW卷积)和逐点卷积(PW卷积),对比了它与普通卷积的区别,指出其参数量更少但可能造成精度损失。深度可分离卷积常用于降低模型复杂度,且可通过增加输出层数量缓解精度损失。代码实现中,使用nn.Conv2d即可完成深度可分离卷积。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

左边是一个三通道的特征图,中间是用到的卷积核,右边是提取到的4幅特征。我们以3×3卷积为例,当然也有人用5×5、7×7、9×9。

普通卷积的过程是这样的:输入特征的每个channel分别和卷积核的每个channel中的权值参数做点乘,然后ADD、最后再Concat。

图中的参数量为:3×3×3×4 = 108

需要注意的是:

  • 单个卷积核的通道数和输入特征的通道数相等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刚哥吧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值