从四个角度简单专业的理解深度学习中BN、GN、LN、IN等归一化操作

本文从直观、数学、输入和优势四个角度解析深度学习中的归一化操作,包括批归一化(BN)、层归一化(LN)、实例归一化(IN)和组归一化(GN)。归一化有助于加速网络训练,防止梯度消失,提高精度,并在不同场景下各有优劣。例如,GN适合小批量大小,IN适用于风格迁移,LN常用于RNN。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作为深度学习最基础的内容,这大概是每一个算法工程师必须要理解的,但是你理解了吗?哪个归一化更牛逼你知道吗?

        无论是图像、数据还是其他方向的深度学习算法,他们学的是什么呢?学的是数据分布。就以目标检测来说:检测器之所以能对世间万物进行检测,归根到底是因为每一类目标在一张图像中的像素分布是有一定规律的,这也是深度学习的本质。那么为什么要做归一化呢?在网络训练过程中,每一类目标不会之保持一模一样的像素分布,而是会产生一种协方差偏移。这个协方差偏移简单理解就是每一类中的每一个目标都有或多或少的不同,这就给网络训练带来了难度。


直观角度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刚哥吧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值