YOLO系列检测器优化策略之Match positive samples和Eliminate grid sensitivity

本文探讨YOLO系列检测器的优化策略,包括消除grid敏感性和匹配正样本的方法。理解grid及其cell对于目标检测至关重要。在预测过程中,每个grid cell通过卷积预测边界框、置信度和类别。优化策略中,消除grid敏感性通过调整sigmoid函数的输入,确保网络对边界情况更敏感。此外,匹配正样本不仅考虑当前grid cell,还包含相邻cell的相同类别的anchor,增加了正样本的数量,有助于网络训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目标检测任务中,代码中的grid是什么?

grid可以从两个角度理解:

  • grid真实的代表是预测特征层,每一个grid cell就代表特征层上的一个像素点。
  • 在输入图像中打上grid网格,就代表每一个grid cell(预测特征层的像素点)对应原始图像上的感受野,也就是等比例缩放后的大小。

因此:

  • 想要得到预测特征层的输出(bbox、cls和conf),只需要在grid上先通过一个3×3卷积,再通过一个1×1卷积即可。最后一个1×1卷积层的卷积个数为4+1+num_cls。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刚哥吧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值