Xavier法与何恺明法初始化权重的意义及原理

本文探讨了神经网络权重初始化的重要性,解释了Xavier和He初始化方法的原理,旨在确保信息在正向传播和反向传播过程中有效传递。Xavier初始化适用于tanh和sigmoid激活函数,而He初始化更适合ReLU及其变体,如leaky ReLU。通过调整权重初始化的方差,这两种方法可以防止梯度消失和过拟合问题,促进深层神经网络的训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

神经网络的本质:学习数据分布

神经网络中,每层数据传送是要有意义的,这种意义直观的体现为原本要表达的意思,不能说通过神经网络后被曲解,或者可以理解为一句话通过传递不能变成谣言。

  • 全零初始化:对于每一层中的各个神经元,weights都是相同的。因此无论网络训练多少轮,每层的输出都一样,无法学习或者提取到不同的特征。(从左往右依次为神经网络的每一个全连接层+激活函数的输出的数据分布,共五层)

  • 小一点的随机权值初始化(均值为零,方差特别小):虽然每个神经元都有各自的值,能够保证更新是不同的,但对于输出经过tanh激活后(第一行所示),会聚集于0,对于输出经过sigmoid激活后(第二行所示),会聚集于0.5。因此信息仍然无法实现传递,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刚哥吧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值