推理图像超分辨率网络

本文档介绍了如何使用TensorRT和C++实现基于Real-ESRGAN的图像超分辨率网络,提供了从ONNX模型到TRT引擎的转换方法,并详细解析了推理过程。实测在不同GPU上的推理速度,强调了tile_size参数对性能的影响。项目源码和依赖库链接已提供。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本博客为全网首发,所涉及到的代码和库均是可运行的,在博文下面有具体链接,可直接迁移至项目。本项目处理1024×1024大小的图像在750Ti上实测速度为2.8s,在1080Ti上实测170ms;处理512×512大小的图像在750Ti上实测速度为780ms,在1080Ti上实测65ms。

先给大家看四组经过图像降噪网络后的对比效果效果~

怎么样,是不是感觉还不错呢。我们能够选择的有两条路线实现C++的部署:

  • 1)onnx + 多线程:这种方法适用于多种框架,比如ncnn。但是无法将N卡性能完全发挥出来。
  • 2)用Trt的engine文件推理。该方法不仅可以做到C++推理,还可以将N卡的性能最大限度的
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刚哥吧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值