利用MMDeploy和MMDection在C++和TensorRT的基础上部署RTMDet检测分割一体化网络

本文详细介绍了如何利用MMDeploy和MMDetection在C++环境中,结合TensorRT对RTMDet检测分割一体化网络进行部署。关键步骤包括:确保依赖项版本匹配,安装mmdeploy、mmengine和mmdet,模型转换为TensorRT engine文件,最后在VS工程中进行推理。注意模型转换和CUDA/CUDNN配置是成功部署的关键。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

PS:步骤不是很复杂,但很容易出错

  • 步骤1:安装基础依赖,所需外部依赖:VS2019   Pytorch==1.12.0 Torchvision==0.13.0  Torchaudio==0.12.0      CUDA 11.3.1  cudnn 8.2.1    mmdet-3.0.0rc6  cmake。请注意:VS2019,Pytorch,CUDA,cudnn的版本需要完全一致,此外,后续的mmdeploy和tensorrt的版本也需要完全一致
conda create -n mmdepoly python=3.8 -y
conda activate mmdepoly
conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刚哥吧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值