系列网络 C++&Win10&Tensorrt 部署教程

本文介绍了如何在C++和Windows 10环境下使用TensorRT部署RealESRGAN_x4的剪枝版本realesr-general-x4v3。通过融合模型权重和调整去噪强度,实现超分辨率和降噪的平衡,以适应实时应用需求。部署过程中包括模型融合、ONNX转换和生成engine引擎的步骤。

前一篇文章对 成功部署,尤其是将推理时间从原先python的20s以上提高到2s以内。尽管如此,仍面临以下问题:

  • 足够快,但其主要是针对动漫,对于真实世界场景不够理想;
  • 能够在速度和精度上取得权衡,但其仍然做不到实时应用,且效果也


在部署层面,为了和原先的代码兼容,我们将在生成engine引擎之前直接对pth文件进行融合,完整的融合代码如下所示:

以根据实际需要进行修改。融合后得到最新的pth文件后,我们需要将其转为onnx版本,完整的代码如下(也就是在之前的转换脚本中增加一行代码即可):

最后,我们采用engine引擎,示例cmd的命令如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刚哥吧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值