【企业架构】当今企业架构实践的相关性是什么?

本文是“2021年谁仍然对企业架构感兴趣?”系列的第一部分。分析指出,现代科技公司中企业架构实践重要性下降,传统术语、角色和框架如TOGAF、Zachman已过时,许多大型科技公司不再寻找企业架构师。不过后续系列将探讨企业架构并非终结,而是会转变。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天的内容构成了名为“2021 年谁仍然对企业架构感兴趣?”系列的六个部分中的第一个部分。在这个系列中,我提供了我的观点

  • - 当今企业架构的足迹,

  • - 企业架构师角色的潜在死亡,

  • - 大玩家,例如 The Open Group、AWS 或 Azure 的 TOGAF,

  • - 以及 EA 工具提供商的角色和

  • - 市场上的其他相关证书和发展。

在今天的第一部分中,我分析了 Google Trends 上常见企业架构术语的搜索词 attention。我将重点介绍当今最重要的 EA 框架 TOGAF 和 Zachman 的起源,并分享我的求职结果。我推断企业架构可能是一种死法。

无论您是在阅读本文还是在收听播客版本,请务必尽快查看该系列的其他部分!

2021 年谁还对企业架构感兴趣?


– 第 1 部分,共 6 部分
似乎,尤其是在现代科技公司中,企业架构 (EA) 实践的重要性正在下降。一些组织甚至可能认为这是一种无关紧要的做法。在下文中,我们分析了这些意见的来源。在本系列的后面部分,我们将提供反对这种推理的论据并提供分析,这表明这并不是企业架构作为一种实践的终结。然而,企业架构将经历转变为一组经过调整的活动、新的优先事项和新的所需技能。

传统的企业架构术语、角色和框架变得无关紧要


对 EA 的关注度似乎在稳步下降:根据谷歌趋势摘录的图 1,主题集群“企业架构”的搜索请求数量自 2016 年以来下降了 50% 以上,自 2004 年以来下降了 75% 。此外,图 1 显示了 2004 年至 2021 年期间对“业务架构”、“应用程序生命周期管理”、“数据管理”和“技术管理”等相关 EA 术语的搜索请求的相对数量。所有随着时间的推移,他们的注意力逐渐减少。

329607ceea2e6caef65dcafce6412730.jpeg

图1

此外,与几十年前相比,EA 博客和网站也少了很多。由于缺乏更新,很多关于最佳实践的过时 EA 内容在搜索引擎中的排名仍然较高。

TOGAF 和 Zachman 已过时


进一步的证据来自最重要的行业标准框架,例如 TOGAF 和 Zachman。TOGAF 于 1995 年首次发布。它由 The Open Group 的几家成员公司开发,包括 IBM 或 Oracle 等主要参与者。TOGAF 标准每隔几年更新一次,最新版本是 2018 年 4 月的 9.2 版。虽然最新版本旨在更好地针对数字化转型这一主题,但整体内容并没有太大变化。此外,经过认证的从业者不需要在次要版本之间更新他们的认证,当前的主要版本于 2011 年上线。在持续数字中断的时代,十年前的内容不再完全相关。

第二个最重要的框架是 Zachman 框架。随着 1987 年的初始版本和 2011 年的最新主要版本,它与 TOGAF 具有相同的年龄。因此,我们可以说,最重要的企业架构框架在过去十年中没有收到任何重大更新,因此——至少部分地——已经过时了。

58ed202905baae0097514a78b968fe4b.jpeg

许多大型科技公司不寻找企业架构师


除了上述论点之外,还有一个额外的观察结果,这在许多不同的组织中都很常见:组织拥有的旧世界/遗留 IT 越多,组织中的企业架构师就越重要。同样,在拥有旧世界和新世界 IT 的组织中,企业架构师负责管理旧世界的架构。但是,它们对新世界IT的发展影响甚微;数字区。如果他们干涉(例如,试图调整事情),他们通常被视为减慢进程,并成为项目成功的障碍或威胁。尽管这肯定有例外,但有一个明确的模式是,很少或没有遗留 IT 的公司没有企业架构师的角色,也不为他们的组织寻找这样的职位。在 Netflix 或亚马逊寻找“企业架构师”的工作似乎证实了这一趋势。

这是否意味着企业架构已死?2021 年的企业架构是否还有相关性?它在当今的数字时代扮演什么角色?在本系列的下一部分中,我们将回答这些问题。

您喜欢“企业架构的相关性”系列的这一部分吗?你能确认观察和分析,还是你不同意?很高兴听到你的想法!

本文:【企业架构】当今企业架构实践的相关性是什么?

内容概要:本文档详细介绍了一个基于MATLAB实现的跨尺度注意力机制(CSA)结合Transformer编码器的多变量时间序列预测项目。项目旨在精准捕捉多尺度时间序列特征,提升多变量时间序列的预测性能,降低模型计算复杂度与训练时间,增强模型的解释性和可视化能力。通过跨尺度注意力机制,模型可以同时捕获局部细节和全局趋势,显著提升预测精度和泛化能力。文档还探讨了项目面临的挑战,如多尺度特征融合、多变量复杂依赖关系、计算资源瓶颈等问题,并提出了相应的解决方案。此外,项目模型架构包括跨尺度注意力机制模块、Transformer编码器层和输出预测层,文档最后提供了部分MATLAB代码示例。 适合人群:具备一定编程基础,尤其是熟悉MATLAB和深度学习的科研人员、工程师和研究生。 使用场景及目标:①需要处理多变量、多尺度时间序列数据的研究和应用场景,如金融市场分析、气象预测、工业设备监控、交通流量预测等;②希望深入了解跨尺度注意力机制和Transformer编码器在时间序列预测中的应用;③希望通过MATLAB实现高效的多变量时间序列预测模型,提升预测精度和模型解释性。 其他说明:此项目不仅提供了一种新的技术路径来处理复杂的时间序列数据,还推动了多领域多变量时间序列应用的创新。文档中的代码示例和详细的模型描述有助于读者快速理解和复现该项目,促进学术和技术交流。建议读者在实践中结合自己的数据集进行调试和优化,以达到最佳的预测效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

架构师研究会

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值