文章目录
摘要
论文链接:https://arxiv.org/pdf/2304.03198.pdf
空间注意力被广泛用于提高卷积神经网络的性能。然而,它有一定的局限性。本文对空间注意力的有效性提出了一种新的视角,即空间注意力机制从本质上解决了卷积核参数共享问题。然而,空间注意力生成的注意图中包含的信息对于大尺寸的卷积核来说是不够的。因此,本文提出一种新的注意力机制,称为感受野注意力(RFA)。现有的空间注意力,如卷积块注意力模块(Convolutional Block attention Module, CBAM)和协同注意力(coordination attention, CA)仅关注空间特征,未能完全解决卷积核参数共享的问题。相比之下,RFA不仅关注感受野空间特征,而且为大尺寸卷积核提供了有效的注意力权重。RFA提出的感受野注意力卷积操作(RFAConv)是一种替代标准卷积操作的新方法。它提供了几乎可以忽略不计的计算成本和参数增量,同时显著提高了网络性能。在ImageNet-1k、COCO和VOC数据集上进行了一系列实验,以证明所提方法的优越性。特别重要的是,对于当前的空间注意力机制,是时候将焦点从空间特征转移到感受野空间特征了。这样可以进一步提高网络性能,达到更好的效果。相关任务的代码和预训练模型可以在https://github.com/Liuchen1997/RFAConv上找到。
1、引言
卷积神经网络[1,2]通过使用具有共享参数的卷积操作,大大降低了模型的计算开销和复杂度。卷积神经网络在LeNet[3]、AlexNet[4]、VGG[5]等经典网络的驱动下,目前已经建立了完整的体系,形成了先进的卷积