YoloV10改进策略:卷积篇|大感受野的小波卷积|即插即用

论文介绍

  • 论文背景:近年来,人们尝试增大卷积神经网络(CNNs)的核大小以模仿视觉转换器(ViTs)自注意力模块的全局感受野,但这种方法很快便达到了上限并饱和。论文提出了一种新的解决方案,即利用小波变换(WT)获得非常大的感受野。
  • WTConv层:论文提出了一种新层,称为WTConv,该层使用WT来有效地增加卷积的感受野,并且可以作为现有架构中的即插即用替代品。
  • 实验验证:论文通过大量实验评估了WTConv在图像分类等计算机视觉任务中的效果,并展示了其带来的额外特性。

创新点

  • 利用小波变换:论文首次将小波变换(WT)应用于卷积神经网络中,以有效地增加卷积的感受野,同时避免过度参数化。
  • 即插即用替代品:WTConv层被设计为深度卷积的即插即用替代品,可以在任何给定的CNN架构中直接使用,而无需额外修改。
  • 多频响应:WTConv层能够产生有效的多频响应,并且随着感受野大小的增加而优雅地扩展。

方法

  • 小波变换:论文采用Haar小波变换,因为它高效且直接。给定一张图像,通过深度卷积和下采样实现小波变换。
  • 小波域中的卷积:使用小波变换对输入的低频和高频内容进行滤波
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值