知识追踪(Knowledge Tracing)是根据学生过去的答题情况对学生的知识掌握情况进行建模,从而得到学生当前知识状态表示的一种技术。知识追踪是基于学生行为序列进行建模,预测学生对知识的掌握程度。知识追踪是构建自适应教育系统的核心和关键。在自适应的教育系统中,无论是做精准推送,学生学习路径规划或知识图谱构建,第一步都是能够精准预测学生对知识的掌握程度。
由于深度学习并不需要人类教会模型不同题目的难易、考核内容等特定的知识,避免了大量的手工标注特征工作量,而且在互联网在线教育行业兴起后,拥有了海量的学生答题记录,这些答题记录就能教会模型将题库中成千上万条题目encode为一个向量,并且能类似于word2vec那样找出题目之间的关联。因此之后各种AI+教育、个性化、智能化教育的概念也火了起来。
但是目前在该领域中,用于知识追踪的网络模型的优化还是一个现存的问题。因此在本文中,我们着重对于网络进行了优化,以期达到最好的效果。
我们通过对于多个网络模型的参数的调试,选择出了最好的模型参数,魔性对于知识追踪的准确率可以达到70%以上。
关键词:知识追踪,深度学习,RNN
Research on Teaching Analysis and Evaluation Methods Based on Knowledge Tracing Models
Abstract
Knowledge Tracing is a technique that models a student's knowledge mastery based on their past answers, in order to obtain a representation of their current knowledge state. Knowledge tracking is based on modeling student behavior sequences to predict their level of mastery of knowledge. Knowledge tracking is the core and key to building an adaptive education system. In an adaptive education system, whether it is precise push, stu