01 基本概念
这篇文章一直说版权不明我也不知道为什么...
1.1引言
机器学习主要用于解决什么问题?
- 通过计算的手段,利用经验来改善系统自身的性能
- 有了数据
- 通过某种学习算法
- 得到模型
- 进行预测
1.2基本术语
这些很简单,看看图就好了
数据
通过某种学习算法
通常对于监督学习,我们可以划分训练集,测试集,这个会在后续介绍
得到模型
这里的模型通常有下面几种
- 有监督学习:
- 分类
- 回归
- 无监督学习
- 聚类
- 半监督学习
- 两者结合
下面就介绍一下这几种模型,都以西瓜来举例
进行预测
泛化能力
机器学习的目标是使得学到的模型能很好的适用于“新样本”, 而不仅仅是训练集合,我们称模型适用于新样本的能力为泛化(generalization)能力。
简单的说,就是预测没见过的数据的能力
1.3 假设空间
1.4归纳偏好
如下图:我们应该用什么作为判断条件来决定预测的结果呢?
通俗的来讲:归纳偏好就是选择最简单的,最本质的那种. 比如以月球为中心和以太阳为中心写出各个星球的运行轨迹公式,显然是以太阳为中心的来的简单
1.5 发展历程
了解一下即可
机器学习 就是一种程序,有自我改善的能力,人为干预越少越好
1.6 应用现状