01 基本概念

本文介绍了机器学习的基本概念,包括其目的、术语、模型类型如有监督学习、无监督学习和半监督学习,并讨论了泛化能力和假设空间的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

01 基本概念

这篇文章一直说版权不明我也不知道为什么...

1.1引言

机器学习主要用于解决什么问题?

  • 通过计算的手段,利用经验来改善系统自身的性能
  • 有了数据
  • 通过某种学习算法
  • 得到模型
  • 进行预测

在这里插入图片描述

1.2基本术语

这些很简单,看看图就好了

数据

在这里插入图片描述
在这里插入图片描述

通过某种学习算法

通常对于监督学习,我们可以划分训练集,测试集,这个会在后续介绍
在这里插入图片描述

得到模型

这里的模型通常有下面几种

  • 有监督学习:
    • 分类
    • 回归
  • 无监督学习
    • 聚类
  • 半监督学习
    • 两者结合

下面就介绍一下这几种模型,都以西瓜来举例
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

进行预测

在这里插入图片描述

泛化能力

机器学习的目标是使得学到的模型能很好的适用于“新样本”, 而不仅仅是训练集合,我们称模型适用于新样本的能力为泛化(generalization)能力。
简单的说,就是预测没见过的数据的能力

1.3 假设空间

在这里插入图片描述
在这里插入图片描述

1.4归纳偏好

如下图:我们应该用什么作为判断条件来决定预测的结果呢?
在这里插入图片描述
在这里插入图片描述在这里插入图片描述通俗的来讲:归纳偏好就是选择最简单的,最本质的那种. 比如以月球为中心和以太阳为中心写出各个星球的运行轨迹公式,显然是以太阳为中心的来的简单

1.5 发展历程

了解一下即可
机器学习 就是一种程序,有自我改善的能力,人为干预越少越好
在这里插入图片描述

1.6 应用现状

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Joker-Tong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值