SLAM Cartographer(14)Global SLAM的主线业务

本文介绍了Cartographer全局SLAM的任务,包括接收Local SLAM的子图更新、后端优化问题和位姿图的构建。后端优化通过SPA技术解决非线性最小二乘问题,而位姿图则描述了子图和节点间的约束关系,用于全局位姿估计。文章还详细探讨了子图内和子图间约束以及PoseGraph的结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


1. Global SLAM的任务

在Cartographer的总体框架中,总体了解一下Global SLAM的任务
下图是从总体框图中抠下来的关于Global SLAM的框图
在这里插入图片描述

原图中的输入传感器数据还有激光雷达的扫描数据,但是因为Global SLAM没有直接使用所以被拿掉了

上图中间的虚线框就是Global SLAM的主要工作内容,大体上可以分为三个部分:

  • 接收来自Local SLAM的子图更新结果 InsertionResult,计算在位姿图PoseGraph中相应的节点Node与活跃的子图Insertion submaps的约束,还有闭环检测的约束
    这点已经在《SLAM Cartographer(8)连接前端与后端的桥梁》中有了初步的了解

  • 结合里程计、IMU、全局位姿测量数据(Fixed Frame Pose, 类似GPS这样具有全局测量能力的传感器)的测量信息, 使用

Cartographer主要理论是通过闭环检测来消除构图过程中产生的累积误差[1]。用于闭环检测的基本单元是submap。一个submap是由一定数量的laser scan构成。将一个laser scan插入其对应的submap时,会基于submap已有的laser scan及其它传感器数据估计其在该submap中的最佳位置。submap的创建在短时间内的误差累积被认为是足够小的。然而随着时间推移,越来越多的submap被创建后,submap间的误差累积则会越来越大。因此需要通过闭环检测适当的优化这些submap的位姿进而消除这些累积误差,这就将问题转化成一个位姿优化问题。当一个submap的构建完成时,也就是不会再有新的laser scan插入到该submap时,该submap就会加入到闭环检测中。闭环检测会考虑所有的已完成创建的submap。当一个新的laser scan加入到地图中时,如果该laser scan的估计位姿与地图中某个submap的某个laser scan的位姿比较接近的话,那么通过某种 scan match策略就会找到该闭环。Cartographer中的scan match策略通过在新加入地图的laser scan的估计位姿附近取一个窗口,进而在该窗口内寻找该laser scan的一个可能的匹配,如果找到了一个足够好的匹配,则会将该匹配的闭环约束加入到位姿优化问题中。Cartographer的重点内容就是融合多传感器数据的局部submap创建以及用于闭环检测的scan match策略的实现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

氢键H-H

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值