YOLO与SSD的区别

YOLO

  1. 将物体检测这个问题定义为bounding box和分类置信度的回归问题。

  2. 将整张图像作为输入,划分成SxS grid,每个cell预测B个bounding box(x, y, w, h)及对应的分类置信度(class-specific confidence score)。分类置信度是bounding box是物体的概率及其与真实值IOU相乘的结果。

SSD

  1. 将物体检测这个问题的解空间,抽象为一组预先设定好(尺度,长宽比,1,2,3,1/2,1/3)的bounding box。

  2. 在每个bounding box,预测分类label,以及box offset来更好的框出物体。

  3. 对一张图片,结合多个大小不同的feature map的预测结果,能够处理大小不同的物体。

区别

  1. YOLO在卷积层后接全连接层,即检测时只利用了最高层Feature maps。而SSD采用金字塔结构,即利用了conv4-3/fc7/conv6-2/conv7-2/conv8_2/conv9_2这些大小不同的feature maps,在多个feature maps上同时进行softmax分类和位置回归

  2. SSD还加入了Prior box(先验框)

https://zhuanlan.zhihu.com/p/89200261

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值