mobilenet v1 v2 v3区别、深度可分离(depthwise)卷积和1x1点卷积

本文介绍了MobileNet的不同版本,包括MobileNetV1引入的深度可分离卷积,MobileNetV2中使用的倒残差结构和线性瓶颈,以及MobileNetV3在搜索网络结构方面的创新,如SE模块和新的激活函数h-swish。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

mobilenet v1

  1. 将标准卷积改为3x3的深度分离卷积(depthwise) 和 1x1点卷积(pointwise)
  • 深度可分离卷积:一个卷积核负责一个通道,一个通道只被一个卷积核卷积。卷积核数量和上一层通道数相同,一一对应。
    – 优点:Separable Convolution的参数个数是常规卷积的约1/3。因此,在参数量相同的前提下,采用Separable Convolution的神经网络层数可以做的更深。
    – 缺点:没有利用不同通道在相同空间位置上的特征,需要点卷积去组合
    – 参数量:1x1x上一层通道数x卷积核个数(输出通道数)

  • 点卷积:
    – 参数量:3x3x上一层通道数

传统卷积参数量:3(上一层通道数) x 3 x 3 x 4(卷积核个数、输出通道数)

mobilenet v2

  1. 根据流形学习得出结论:ReLU导致的较多的信息损耗。但是不能直接用线性激活代替RELU,所以:在输出通道较少的时候用线性激活函数,其他时候ReLU6
    relu6: y= min(max(0,x), 6), 通过实验发现用6最好。图像:
    在这里插入图片描述

  2. 根据流形学习得出结论:如果增加通道数量能够减少信息损失就使用更多通道。所以:使用ReLU6的时候,增加通道数为输入通道数的t倍

https://blog.csdn.net/northeastsqure/article/details/88130792

mobilenet v3

  1. 用MnasNet搜索网络结构;网格搜索中利用两个策略:资源受限的NAS和NetAdapt;
  2. 用V1的深度可分离;
  3. 用V2的倒残差线性瓶颈结构;
  4. 引入SE模块;
  5. 新的激活函数h-swish(x);
    h-swish(x) = x * [RELU6( x + 3)] / 6
  6. 修改V2最后部分减小计算。

各种激活函数:https://blog.csdn.net/jsk_learner/article/details/102822001

https://zhuanlan.zhihu.com/p/95778474?from_voters_page=true

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值