CV基础MX recall map

博客围绕目标检测展开,介绍了MAP、AP等指标,阐述了precision和recall公式及含义,指出目标检测不关注负样本。还提及实现random crop不超过边界,详细介绍R50和Alexnet结构,探讨快慢动作适应、速度问题及数据集规模,也涉及ROC、TAR等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. MAP
    每个类别的 平均precision
    AP:PR曲线下的面积

  2. precision和recall公式 含义
    precision:所有实际预测为正的结果里面(TP+FP),真正正确的有多少(TP)
    recall:所有应该预测为正的结果里面(TP+FN),真正正确有多少(TP)

为什么只关注TP,难道负样本不重要吗??目标检测不关注负样本,负样本是背景

  1. 实现random crop不超过边界
  2. R50结构详细
  3. Alexnet结构详细
  4. 如何解决快慢动作适应,漏帧、漏动作
  5. 数据集规模

ROC
TAR TPR FAR FPR
如何解决速度问题

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值