kmeans聚类 之再也不要写错了

本文介绍了kMeans聚类算法的详细步骤,包括初始化聚类中心,根据距离分配点到最近的类,更新类的平均值作为新中心,直至中心变化极小或达到最大迭代次数。还提供了C++版本的测试代码链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 初始化聚类中心
  2. 计算每个点到聚类中心的距离,将各个点归类到距离最近的聚类中心
  3. 计算得到的每个类中所有点的平均值,将平均值作为新的聚类中心
  4. 反复执行2、3,直到聚类中心不再发生大的变化 或 达到最大迭代次数
# kmeans 聚类
import numpy as np

# 将一系列特征作为样本,进行聚类
def kmeans(features, num, max_iter, tol):
    # step1 初始化聚类中心为 前num个 样本
  
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值