- 初始化聚类中心
- 计算每个点到聚类中心的距离,将各个点归类到距离最近的聚类中心
- 计算得到的每个类中所有点的平均值,将平均值作为新的聚类中心
- 反复执行2、3,直到聚类中心不再发生大的变化 或 达到最大迭代次数
# kmeans 聚类
import numpy as np
# 将一系列特征作为样本,进行聚类
def kmeans(features, num, max_iter, tol):
# step1 初始化聚类中心为 前num个 样本
# kmeans 聚类
import numpy as np
# 将一系列特征作为样本,进行聚类
def kmeans(features, num, max_iter, tol):
# step1 初始化聚类中心为 前num个 样本