QHTH-CXYJZX INTW

本文精选了来自Google AI、一点资讯及2019年秋招的算法工程师面试题目,覆盖LSTM公式、硬币公平性分析、特征选择、K-Means算法、聚类模型评估、信息流采样算法、最短路径计算、损失函数类型、地理坐标转换方法、数据挖掘建模策略等多个方面,旨在帮助读者深入理解算法原理及其应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文:https://blog.csdn.net/tkkzc3E6s4Ou4/article/details/79988599?utm_source=blogxgwz0

https://www.jianshu.com/p/fffc15c9d31d

http://m.elecfans.com/article/622680.html

https://zhuanlan.zhihu.com/p/44725360

https://blog.csdn.net/zhongqi2513/article/details/80342659

1,LSTM的公式

2,投掷一枚硬币 10 次,8 次正面和 2 次反面。如何分析掷硬币的公平性?p值是什么?(什么是 p-value?)

3,为什么要使用特征选择?如果两个预测因子高度相关,那么对逻辑回归中的系数有什么影响? 系数的置信区间是多少?

4,写出K-Means 算法伪代码

5,如果标签在聚类项目中是已知的,那么如何评估模型的性能?

以上为google ai面试题

 

6,信息流采样,有n份数据,但是n的长度并不知道,设计一个采样算法,使得每份被选择的概率是相同的。

以上为一点资讯面试题

 

7,无向无环图中,最短路径的最大值(Floyd算法)

8,神经网络里面的损失函数有哪些

9,如果有一万个地理坐标,转换成1-10000的数,可以用决策树么?

10,在数据挖掘的各种场景中,如SVM,逻辑回归、EM、K-means等,如何处理数据,怎么进行建模

(原题:问了很多数据挖掘的基础知识,包括SVM,逻辑回归、EM、K-means等,然后给我很多场景问我遇到这些情况我要怎么来处理数据,怎么进行建模等等,问得很细)

以上为2019秋招算法工程师面试题

11,如何预测北京市未来5年人口数量和年份城镇化水平

 

其他:

爬虫如何应对网站的反爬机制?(如验证码等)

如果你是被爬的网站,如何识别对方是爬虫访问还是用户真实访问?

爬虫如何应对基于流计算的反爬机制?

基于时间序列的算法和模型

用的caffe什么模型?(caffe只是框架)

对时间、空间(GIS地理、坐标系统)的一些常见算法、模型有没有了解?

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值