1、R1=1,R2=3,R3=4,is1=0,is2=8,us=24,求网孔电流
三个网孔,可以分别列出三个网孔电流方程,假设都是顺时针
对上网孔,可有i1R2+I1R1-I3R2-I2R1-us1=0,且i1=-is1
对左网孔,可有i2R1-i1R1-us2=us
对右网孔,可有i3R2+i3R3-i1*R2+us2=0
且有i3-i2=is2
综上可求得i1=0A,i2=-4A,i3=4A
2、求受控源功率
有三个网孔,可以列出三个方程,设都为顺时针
对上网孔,可有ui+100i1-100i2=0
对下网孔,可有100i2+200i2-2+100i2-14-100i1-200i3=0
对右网孔,可有300i3+2+200i3-200i2=0,且i3=i
且有i1=2i=2i3
综上可解得ui=2,i1=0.04
可解得吸收功率为p=u*i=80mw
3、求受控源功率
有三个网孔,可列出三个网孔电流,设顺时针方向
可解得i1=26A,i2=29.6A,i3=28A
而可有i=i2-i3=1.6A,而u=15i=24V
由此可以解除受控源的吸收功率p=ui=24*26=624w
4、列出节点方程
可看出本图中总共有5个节点,而我们只需要取G3两边的节点1和2,以及G4上方的节点3就可以解决题目,以进入为正
对于节点1,可有G1(us-u1)+G3(u2-u1)-G2(u1-u3)=0
对于节点2,可有G3(u1-u2)+G5u0-i=0
对于节点3,可有G2(u1-u3)+i-G4u3=0
且有u2-u3=μu=μ(u1-u3)
5、试证明
对于左侧运放,我们可以知道,R2上的电流等于R1上的电流,因为左侧的运放的“虚断”特性,而R1上节点的电压降等于u1,因为左侧运放的“虚短”特性,由此可以列出一个电流相等方程
同理,对于右侧运放,R3右节点的电压降等于u2,因为右侧运放的“虚短”特性,而R3上的电流等于R4上的电流,R3+R4这条路上的电流也等于R3上的电流,由此可以列出一个电流相等方程
如下
解方程,可得出题求结果