三、先验分布的确定
-
主观概率(离散型)
- 利用对立事件的比较确定主观概率,例如成功的概率比失败高一倍
- 利用专家意见确定主观概率
- 利用多位专家确定主观概率
- 利用历史资料,考虑现有信息加以修正
-
利用先验信息确定先验分布(连续型):
- 直方图法:
- 将参数空间分成小区间
- 在每个小区间上决定主观概率或依据历史数据确定其频率
- 绘制频率直方图
- 在直方图上做一条光滑曲线,即为先验分布
- 选定先验密度函数形式再估计超参数
- 根据先验信息选定θ\thetaθ的先验密度函数π(θ)\pi(\theta)π(θ)形式
- 对分布中的超参数给出估计值,使最接近先验信息
- 定分度法与变分度法
- 定分度法:长度一样,概率不同的小区间,给出每个小区间的主观概率
- 变分度法:概率一样,长度不同的小区间,给区间进行划分
- 直方图法:
-
利用边缘分布确定先验密度,就是极大似然法
-
边缘分布m(x)
- 传统用p(x∣θ)p(x|\theta)p(x∣θ)
- 贝叶斯用边缘分布m(x∣λ)m(x|\lambda)m(x∣λ)
- m(x)={ ∫Θp(x∣θ)π(θ)dθ,当θ为连续∑θ∈Θp(x∣θ)π(θ),当θ为离散m(x)=\begin{cases}\int_{\Theta}p(x|\theta)\pi(\theta)d\theta,当\theta为连续\\\sum_{\theta\in\Theta}p(x|\theta)\pi(\theta),当\theta为离散\end{cases}m(x)={ ∫Θp(x∣θ)π(θ)dθ,当θ为连续∑θ∈Θp(x∣θ)π(θ),当θ为离散
- 当先验分布有未知数的时候,例如π(θ)=π(θ∣λ)\pi(\theta)=\pi(\theta|\lambda)π(θ)=π(θ∣λ),那么被积分之后m(x)变为与λ\lambdaλ相关的函数,可记为m(x∣λ)m(x|\lambda)m(x∣λ)
- 我们所需要做的就是求使m(x)m(x)m(x)达到最大的λ\lambdaλ,也就是最大似然估计(最大似然二型估计)
-
混合分布:
-
变量x依概率π\piπ在总体F1F_1F1中取值,以1−π1-\pi1−π在总体F2F_2F2中取值,若F1(x∣θ1),F2(x∣θ2)F_1(x|\theta_1),F_2(x|\theta_2)F1(x∣θ1),F2(x∣θ2)分别是两个总体的分布函数,则x的分布函数为两个分布函数的加权相加:F(x)=πF1(x∣θ1)+(1−π
-
-