贝叶斯(三)先验分布的确定

本文详细介绍了在贝叶斯统计中如何确定先验分布,包括主观概率方法、直方图法、利用历史资料修正、选择先验密度函数形式、矩方法以及无信息先验分布的选择。通过这些方法,可以为连续型和离散型参数建立合适的先验分布,进而进行后验概率的推断。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

三、先验分布的确定

  1. 主观概率(离散型)

    1. 利用对立事件的比较确定主观概率,例如成功的概率比失败高一倍
    2. 利用专家意见确定主观概率
    3. 利用多位专家确定主观概率
    4. 利用历史资料,考虑现有信息加以修正
  2. 利用先验信息确定先验分布(连续型):

    1. 直方图法:
      1. 将参数空间分成小区间
      2. 在每个小区间上决定主观概率或依据历史数据确定其频率
      3. 绘制频率直方图
      4. 在直方图上做一条光滑曲线,即为先验分布
    2. 选定先验密度函数形式再估计超参数
      1. 根据先验信息选定θ\thetaθ的先验密度函数π(θ)\pi(\theta)π(θ)形式
      2. 对分布中的超参数给出估计值,使最接近先验信息
    3. 定分度法与变分度法
      1. 定分度法:长度一样,概率不同的小区间,给出每个小区间的主观概率
      2. 变分度法:概率一样,长度不同的小区间,给区间进行划分
  3. 利用边缘分布确定先验密度,就是极大似然法

    1. 边缘分布m(x)

      1. 传统用p(x∣θ)p(x|\theta)p(xθ)
      2. 贝叶斯用边缘分布m(x∣λ)m(x|\lambda)m(xλ)
        1. m(x)={ ∫Θp(x∣θ)π(θ)dθ,当θ为连续∑θ∈Θp(x∣θ)π(θ),当θ为离散m(x)=\begin{cases}\int_{\Theta}p(x|\theta)\pi(\theta)d\theta,当\theta为连续\\\sum_{\theta\in\Theta}p(x|\theta)\pi(\theta),当\theta为离散\end{cases}m(x)={ Θp(xθ)π(θ)dθ,θθΘp(xθ)π(θ),θ
        2. 当先验分布有未知数的时候,例如π(θ)=π(θ∣λ)\pi(\theta)=\pi(\theta|\lambda)π(θ)=π(θλ),那么被积分之后m(x)变为与λ\lambdaλ相关的函数,可记为m(x∣λ)m(x|\lambda)m(xλ)
      3. 我们所需要做的就是求使m(x)m(x)m(x)达到最大的λ\lambdaλ,也就是最大似然估计(最大似然二型估计)
    2. 混合分布:

      1. 变量x依概率π\piπ在总体F1F_1F1中取值,以1−π1-\pi1π在总体F2F_2F2中取值,若F1(x∣θ1),F2(x∣θ2)F_1(x|\theta_1),F_2(x|\theta_2)F1(xθ1),F2(xθ2)分别是两个总体的分布函数,则x的分布函数为两个分布函数的加权相加:F(x)=πF1(x∣θ1)+(1−π

### 贝叶斯模型中的先验分布模拟 贝叶斯模型的核心在于通过结合先验分布和观测数据来推断后验分布。在实际操作中,选择合适的先验分布对于获得可靠的后验估计至关重要[^3]。以下是关于如何使用Python实现贝叶斯模型中先验分布的模拟的具体方法。 #### 使用PyMC3库进行先验分布的模拟 `PyMC3` 是一种强大的工具,用于构建和求解贝叶斯统计模型。它允许用户定义复杂的概率图形模型,并支持多种采样算法(如MCMC)来进行推理。以下是一个简单的例子,展示如何利用 `PyMC3` 来模拟不同类型的先验分布: ```python import pymc3 as pm import numpy as np import matplotlib.pyplot as plt with pm.Model() as model: # 定义正态分布作为先验 prior_normal = pm.Normal('prior_normal', mu=0, sigma=1) # 定义伽马分布作为另一种可能的先验 prior_gamma = pm.Gamma('prior_gamma', alpha=2, beta=1) # 抽取样本以可视化这些先验分布 trace = pm.sample_prior_predictive(samples=1000) # 可视化结果 fig, axes = plt.subplots(1, 2, figsize=(12, 5)) axes[0].hist(trace['prior_normal'], bins=30, density=True, color='blue', alpha=0.7) axes[0].set_title("Normal Prior Distribution") axes[1].hist(trace['prior_gamma'], bins=30, density=True, color='green', alpha=0.7) axes[1].set_title("Gamma Prior Distribution") plt.tight_layout() plt.show() ``` 上述代码展示了两种不同的先验分布:标准正态分布和伽马分布。通过调用 `pm.sample_prior_predictive()` 函数可以抽取大量样本,进而绘制直方图以便直观理解所选先验的影响[^4]。 #### 关于稀疏贝叶斯学习(SBL)的应用扩展 除了传统的贝叶斯分析外,在某些场景下还可以考虑引入稀疏贝叶斯学习(Sparse Bayesian Learning, SBL)。这种方法不仅能够提供参数及其不确定性的估计,还具有自动特征选择的能力[^2]。这使得其特别适合处理高维度的数据集,其中许多变量可能是冗余或者无关紧要的。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值