贝叶斯例题(一)先验分布与后验分布

第一章 先验分布与后验分布

例1.2.1

设事件A的概率是θ\thetaθ,有n次独立观测,事件A出现的次数为x,求后验分布
解:
首先写出先验分布π(θ)\pi(\theta)π(θ),由于没有,故采用0-1上的均匀分布π(θ)={ 10<θ<10other\pi(\theta)=\begin{cases}1&0<\theta<1\\0&other\end{cases}π(θ)={ 100<θ<1other
再求解x的分布函数p(x∣θ)=Cnxθx(1−θ)n−xp(x|\theta)=C_n^x\theta^x(1-\theta)^{n-x}p(xθ)=Cnxθx(1θ)nx
可有联合密度函数h(x,θ)=p(x∣θ)π(θ)=Cnxθx(1−θ)n−x,0<θ<1h(x,\theta)=p(x|\theta)\pi(\theta)=C_n^x\theta^x(1-\theta)^{n-x},0<\theta<1h(x,θ)=p(xθ)π(θ)=Cnxθx(1θ)nx,0<θ<1
可有x边缘分布函数m(x)=∫01h(x,θ)dθ=CnxΓ(x+1)Γ(n−x+1)Γ(n+2)m(x)=\int_0^1h(x,\theta)d\theta=C_n^x\frac{\Gamma(x+1)\Gamma(n-x+1)}{\Gamma(n+2)}m(x)=01h(x,θ)dθ=CnxΓ(n+2)Γ(x+1)Γ(nx+1)
可解得后验分布π(θ∣x)=h(x,θ)m(x)=Γ(n+2)θx(1−θ)n−xΓ(x+1)Γ(n−x+1)\pi(\theta|x)=\frac{h(x,\theta)}{m(x)}=\frac{\Gamma(n+2)\theta^x(1-\theta)^{n-x}}{\Gamma(x+1)\Gamma(n-x+1)}π(θx)=m(x)h(x,θ)=Γ(x+1)Γ(nx+1)Γ(n+2)θx(1θ)nx
此为贝塔分布Be(x+1,n−x+1)Be(x+1,n-x+1)Be(x+1,nx+1)

例1.2.2

已知先验为π(θ1)=0.4,π(θ2)=0.6\pi(\theta_1)=0.4,\pi(\theta_2)=0.6π(θ1)=0.4,π(θ2)=0.6,进行5次抽样,全满足,求后验分布
解:
有先验分布π(θ1)=0.4,π(θ2)=0.6\pi(\theta_1)=0.4,\pi(\theta_2)=0.6π(θ1)=0.4,π(θ2)=0.6
有x的样本函数p(x∣θ)=C55θ5(1−θ)0p(x|\theta)=C_5^5\theta^5(1-\theta)^0p(xθ)=C55θ5(1θ)0
可有联合密度函数h(x,θ1)=θ15∗0.4=0.236196,h(x,θ2)=θ25∗0.6=0.100842h(x,\theta_1)=\theta_1^5*0.4=0.236196,h(x,\theta_2)=\theta_2^5*0.6=0.100842h(x,θ1)=θ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值