机器学习之K-均值聚类算法

本文介绍了K-均值聚类算法的工作原理,包括初始化、数据分配、中心更新等步骤,并讨论了其优缺点。算法对K值的选择敏感,易受异常值影响,适用于大数据集处理。此外,还给出了一个将数据分为2类的示例,并提供了Python实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

K-均值聚类算法是一种无监督学习算法,用于将数据集分成 K 个不同的组,以最小化每组内部的方差。

该算法包括以下步骤:

1.初始化:随机选择 K 个数据点作为初始聚类中心。

2.分配:将每个数据点分配到与其最近的聚类中心。

3.更新:根据分配的数据点重新计算每个聚类的中心。

4.继续迭代:重复执行步骤 2 和 3 直到聚类中心稳定或达到预定的迭代次数。

5.输出:最终得到的 K 个聚类。

优点:

  1. 简单、易于实现和理解。
  2. 可以处理大数据集。
  3. 可以用于聚类分析、数据预处理、图像分割等领域。

缺点:

  1. 需要预先指定 K 值,且对 K 的选择非常敏感。
  2. 对异常值非常敏感。
  3. 结果可能受到初始聚类中心的影响。
  4. 只能处理数值型数据,而不能处理类别型数据。

总之,K-均值聚类算法是一种能够有效地识别数据集中的不同群体的算法,但需要注意其缺点。在实际应用中,需要根据数据特点和需求选择适当的聚类算法。

假设有以下数据集:

<
样本点 x1 x2
数据点1 1 1
数据点2 1 2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贾斯汀玛尔斯

愿我的经历曾为你指明方向

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值