1. 概述
RAG (Retrieval-Augmented Generation) 管道是一个集成数据处理、向量检索、结果重排序和大语言模型生成的智能问答系统。该系统能够从结构化问答数据中构建知识库,并基于用户提问进行高效检索和生成准确回答。
2. 核心功能
2.1 数据处理与向量库构建
- 功能描述:从JSON格式的问答数据中提取问题和答案,并构建Milvus向量库
- 输入:JSON文件路径,格式为
[{"question":"XXX","answer":"YYY"}, ...]
- 处理流程:
- 加载JSON数据并进行基本校验
- 连接Milvus服务
- 创建或复用Milvus集合
- 使用BGE模型将问答对转换为向量表示
- 批量插入向量及元数据到Milvus
- 参数配置:支持通过环境变量配置Milvus连接信息和模型参数
2.2 向量检索
- 功能描述:将用户查询转换为向量,并在Milvus中进行相似度搜索
- 输入:用户查询文本