AI:详解MCP与A2A协议

🔥详解MCP与A2A协议:AI智能体落地的技术基石与生态革命

引言:当AI学会"团队协作"

在ChatGPT掀起生成式AI革命两年后,行业正在经历从"能说会道"到"能工巧匠"的范式转移。2025年4月,谷歌在 Cloud Next 25 大会上正式发布了 Agent-to-Agent(A2A)协议,旨在解决 AI 智能体之间的通信与协作问题。与此同时,Anthropic 推出的模型上下文协议(Model Context Protocol,简称 MCP)也在不断完善,为 AI 智能体提供了与外部工具和数据源交互的标准。​​MCP ​​与 ​​A2A​​ 两大协议的出现,标志着AI智能体(Agent)技术进入工业级落地的关键阶段。


MCP

一、MCP 核心概念:定义与价值

1.1 架构

在这里插入图片描述
设备(可能是电脑等终端设备)上运行着 MCP 客户端(MCP clients,代码示例为 client.py ),MCP 客户端可以连接到 MCP 主机(MCP hosts ,如 Claude 等)。

MCP 通过不同的连接方式,与多个 MCP 服务器(MCP server)相连。这些 MCP 服务器可以连接远程服务(Remote services,例如图中展示的彩色图标代表的服务、谷歌邮件 Gmail、谷歌日历 Google Calendar ),也可以连接本地数据源(Local data sources,图中带笑脸的图标 )。

整体架构类似于 USB 接口的连接方式,形象地体现了 MCP 作为一种协议,用于实现模型与外部服务和数据源之间的连接与交互,强调其在不同系统间搭建沟通桥梁的作用 。

1.2 什么是 MCP?

MCP是人工智能领域的一种“万能接口协议”,你可以把它想象成AI世界的USB-C。它的核心作用是让原本“与世隔绝”的AI模型(比如ChatGPT这类对话机器人)学会与现实世界互动,就像给一个聪明但足不出户的人装上了眼睛、耳朵和手脚。是一种 用于协调模型调用、上下文保持与状态同步的协议层

在多个模型或 Agent 使用同一个基础模型(如 GPT、Claude 等)时,MCP 提供一种机制:

  • 管理长期上下文
  • 支持多轮对话中的状态一致性
  • 标准化模型调用格式(通常是 JSON 协议)

1.3 举个实际例子理解MCP的作用

假设你想让AI助手帮你做这些事:
1️⃣ 查看电脑里昨天写的文档
2️⃣ 登录邮箱发送会议通知
3️⃣ 查询实时天气安排行程

没有MCP时,AI只能凭空编造答案。但通过MCP协议:

  1. AI会说:“嘿,MCP服务器!请查查D盘『工作文档』里的内容”
  2. 你电脑里的MCP服务器立刻响应,像秘书一样找到文件
  3. AI拿到真实数据后,再帮你整理内容、发送邮件、查询天气

整个过程就像给AI装上了「真实世界操作手册」。

1.4 技术实现类比

把MCP想象成AI版的快递系统

  • 发件人(AI模型):提出需求(如“查文档”)
  • 快递公司(MCP协议):制定标准化包裹格式和运输路线
  • 收件网点(MCP服务器):分布在你的电脑、手机、云盘等设备中,专门处理各类请求
### MCP协议A2A协议的区别对比 #### 协议设计目标 MCP协议的核心目标是为AI模型提供外部工具、数据源及API资源的标准化交互接口,主要解决单个AI模型外部系统的动态交互问题[^4]。相比之下,A2A协议由Google主导,旨在实现不同系统和平台间AI代理的标准化协作,重点在于打破智能体间的信息孤岛,支持跨厂商、跨框架的多代理协同生态系统[^4]。 #### 应用场景 MCP协议适用于知识检索、智能客服、代码助手等单任务场景,专注于解决AI模型外部资源(如数据库、API)的对接问题[^4]。而A2A协议更适合用于复杂工作流、供应链管理等需要多代理协作的场景,强调代理之间的任务分配状态同步[^4]。 #### 技术架构 MCP协议采用客户端-服务器架构(MCP Client、MCP Server、MCP Host),基于JSON-RPC 2.0协议,支持多轮交互和能力协商[^4]。A2A协议则基于HTTP(S)通道,使用Server-Sent Events实现流式数据传输,并定义了AgentCard(代理能力声明)、Task生命周期管理等标准组件[^4]。 #### 安全机制 在安全方面,MCP协议通过访问控制和数据加密来保护交互过程中的信息安全。A2A协议则更注重企业级身份认证和端到端加密,确保多代理协作环境下的安全性。 #### 典型应用 MCP协议的典型应用场景包括临床诊断AI连接医疗数据库,或者客服AI通过MCP调用数据库工具获取订单物流信息[^5]。A2A协议的典型应用则是招聘流程中HR代理面试代理的协作,例如HR代理通过A2A通知物流AI代理请求生成送达时间预测[^5]。 ```python # 示例代码:MCP协议调用外部数据库 import json_rpc_client def fetch_order_details(order_id): mcp_client = json_rpc_client.MCPClient("http://mcp-server.example.com") result = mcp_client.call_tool("get_order", {"order_id": order_id}) return result # 示例代码:A2A协议通知物流代理 import http_client def notify_logistics_agent(task_id, delivery_info): a2a_client = http_client.A2AClient("http://logistics-agent.example.com") a2a_client.send_event("task_update", {"task_id": task_id, "delivery_info": delivery_info}) ``` #### 总结 MCP协议关注的是单个AI模型外部资源的标准化交互,而A2A协议则侧重于多智能体间的协作。两者的设计目标、应用场景和技术架构均存在显著差异,但在实际项目中可以协同使用,以满足不同的需求[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Thomas Kant

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值