·大O记法
在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,
进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,
也就是算法的时间量度,记作:T(n)=O(f(n))。它表示随问题规模n的增大,
算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度。其中f(n)是问题规模n的某个函数。
这样用大写O( )来体现算法时间复杂度的记法,我们称之为大O记法。
1、常数阶
定义:与问题的大小无关(n的多少),执行时间恒定的算法,我们称之为具有O(1)的时间复杂度,又叫常数阶。
下面这个算法,也就是高斯算法,为什么时间复杂度不是O(3),而是O(1)。
int sum = 0,n = 100; /* 执行一次 */
sum = (1 + n) * n / 2; /* 执行一次 *
/printf("%d", sum); /* 执行一次 */
这个算法的运行次数函数是f(n)=3。
根据我们推导大O阶的方法,第一步就是把常数项3改为1。
在保留最高阶项时发现,它根本没有最高阶项,所以这个算法的时间复杂度为O(1)。
注意:不管这个常数是多少,我们都记作O(1),而不能是O(3)、O(12)等其他任何数字,这是初学者常常犯的错误。
对于分支结构而言,无论是真,还是假,执行的次数都是恒定的,不会随着n的变大而发生变化,
所以单纯的分支结构(不包含在循环结构中),其时间复杂度也是O(1)。
2、对数阶
int count = 1;
while (count < n)
{
count = count * 2; /* 时间复杂度为O(1)的程序步骤序列 *
}
由于每次count乘以2之后,就距离n更近了一分。
也就是说,有多少个2相乘后大于n,则会退出循环。
由2x=n得到x=log2n。所以这个循环的时间复杂度为O(logn)。
3、线性阶
线性阶的循环结构会复杂很多。要确定某个算法的阶次,我们常常需要确定某个特定语句或某个语句集运行的次数。
因此,我们要分析算法的复杂度,关键就是要分析循环结构的运行情况。
下面这段代码,它的循环的时间复杂度为O(n),因为循环体中的代码须要执行n次。
int i;
for (i = 0; i < n; i++)
{
/* 时间复杂度为O(1)的程序步骤序列 */
}
4、平方阶
下面例子是一个循环嵌套,它的内循环刚才我们已经分析过,时间复杂度为O(n)。
int i, j;
for (i = 0; i < n; i++)
{
for (j = 0; j < n; j++)
{
/* 时间复杂度为O(1)的程序步骤序列 */
}
}
而对于外层的循环,不过是内部这个时间复杂度为O(n)的语句,再循环n次。
所以这段代码的时间复杂度为O(n2)。
如果外循环的循环次数改为了m,时间复杂度就变为O(m×n)。i
int i, j;
for (i = 0; i < m; i++)
{
for (j = 0; j < n; j++)
{
/* 时间复杂度为O(1)的程序步骤序列 */
}
}
所以我们可以总结得出,循环的时间复杂度等于循环体的复杂度乘以该循环运行的次数。
那么下面这个循环嵌套,它的时间复杂度是多少呢?
int i, j;
for (i = 0; i < n; i++)
{
for (j = i; j < n; j++) /* 注意j = i 而不是0 */
{
/* 时间复杂度为O(1)的程序步骤序列 */
}
}
由于当i=0时,内循环执行了n次,当i=1时,执行了n-1次,……当i=n-1时,执行了1次。
所以总的执行次数为:用我们推导大O阶的方法,
第一条,没有加法常数不予考虑;
第二条,只保留最高阶项,因此保留n2/2;
第三条,去除这个项相乘的常数,也就是去除1/2,最终这段代码的时间复杂度为O(n2)。
5、计算方法
1.用常数1取代运行时间中的所有加法常数。
2.在修改后的运行次数函数中,只保留最高阶项。
3.如果最高阶项存在且不是1,则去除与这个项相乘的常数。得到的结果就是大O阶。
6、算法空间复杂度
算法的空间复杂度通过计算算法所需的存储空间实现,
算法空间复杂度的计算公式记作:S(n)=O(f(n)),
其中,n为问题的规模,f(n)为语句关于n所占存储空间的函数。