C语言 | 算法时间复杂度

本文详细介绍了大O记法在算法分析中的应用,包括常数阶、对数阶、线性阶、平方阶的实例,以及如何通过计算方法确定时间复杂度。同时涉及空间复杂度的概念及其计算方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

·大O记法

在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,
进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,
也就是算法的时间量度,记作:T(n)=O(f(n))。它表示随问题规模n的增大,
算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度。其中f(n)是问题规模n的某个函数。
这样用大写O( )来体现算法时间复杂度的记法,我们称之为大O记法。

1、常数阶

定义:与问题的大小无关(n的多少),执行时间恒定的算法,我们称之为具有O(1)的时间复杂度,又叫常数阶。


下面这个算法,也就是高斯算法,为什么时间复杂度不是O(3),而是O(1)。

int sum = 0,n = 100; /* 执行一次 */
sum = (1 + n) * n / 2; /* 执行一次 *
/printf("%d", sum); /* 执行一次 */

这个算法的运行次数函数是f(n)=3。

根据我们推导大O阶的方法,第一步就是把常数项3改为1。

在保留最高阶项时发现,它根本没有最高阶项,所以这个算法的时间复杂度为O(1)。
注意:不管这个常数是多少,我们都记作O(1),而不能是O(3)、O(12)等其他任何数字,这是初学者常常犯的错误。

对于分支结构而言,无论是真,还是假,执行的次数都是恒定的,不会随着n的变大而发生变化,

所以单纯的分支结构(不包含在循环结构中),其时间复杂度也是O(1)。
 

2、对数阶

int count = 1;
while (count < n)
{    
    count = count * 2; /* 时间复杂度为O(1)的程序步骤序列 *
}

由于每次count乘以2之后,就距离n更近了一分。

也就是说,有多少个2相乘后大于n,则会退出循环。

由2x=n得到x=log2n。所以这个循环的时间复杂度为O(logn)。
 

 

3、线性阶

线性阶的循环结构会复杂很多。要确定某个算法的阶次,我们常常需要确定某个特定语句或某个语句集运行的次数。

因此,我们要分析算法的复杂度,关键就是要分析循环结构的运行情况。

下面这段代码,它的循环的时间复杂度为O(n),因为循环体中的代码须要执行n次。

int i;
for (i = 0; i < n; i++)
{   
     /* 时间复杂度为O(1)的程序步骤序列 */
}


 

4、平方阶

下面例子是一个循环嵌套,它的内循环刚才我们已经分析过,时间复杂度为O(n)。

int i, j;
for (i = 0; i < n; i++)
{   
    for (j = 0; j < n; j++)    
     {       
         /* 时间复杂度为O(1)的程序步骤序列 */   
     }
}

而对于外层的循环,不过是内部这个时间复杂度为O(n)的语句,再循环n次。

所以这段代码的时间复杂度为O(n2)。

如果外循环的循环次数改为了m,时间复杂度就变为O(m×n)。i

int i, j;
for (i = 0; i < m; i++)
{    
    for (j = 0; j < n; j++)    
    {       
      /* 时间复杂度为O(1)的程序步骤序列 */    
    }
}


所以我们可以总结得出,循环的时间复杂度等于循环体的复杂度乘以该循环运行的次数。

那么下面这个循环嵌套,它的时间复杂度是多少呢?

int i, j;
for (i = 0; i < n; i++)
{   
    for (j = i; j < n; j++)  /* 注意j = i 而不是0 */   
    {       
         /* 时间复杂度为O(1)的程序步骤序列 */  
    }
}

由于当i=0时,内循环执行了n次,当i=1时,执行了n-1次,……当i=n-1时,执行了1次。

所以总的执行次数为:用我们推导大O阶的方法,

第一条,没有加法常数不予考虑;

第二条,只保留最高阶项,因此保留n2/2;

第三条,去除这个项相乘的常数,也就是去除1/2,最终这段代码的时间复杂度为O(n2)。
 

 

5、计算方法

1.用常数1取代运行时间中的所有加法常数。

2.在修改后的运行次数函数中,只保留最高阶项。

3.如果最高阶项存在且不是1,则去除与这个项相乘的常数。得到的结果就是大O阶。

6、算法空间复杂度

算法的空间复杂度通过计算算法所需的存储空间实现,

算法空间复杂度的计算公式记作:S(n)=O(f(n)),

其中,n为问题的规模,f(n)为语句关于n所占存储空间的函数。

C语言作为一种广泛使用的编程语言,提供了许多常见算法和相应的复杂度分析。以下是一些常见的算法及其复杂度: 1. **排序算法**: - **冒泡排序(Bubble Sort)**:通过重复交换相邻未按顺序排列的元素来排序。时间复杂度为O(n^2)。 - **选择排序(Selection Sort)**:每次选择最小(或最大)的元素,放到已排序序列的末尾。时间复杂度为O(n^2)。 - **插入排序(Insertion Sort)**:通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。时间复杂度为O(n^2)。 - **快速排序(Quick Sort)**:通过一个枢轴元素将数组分成两部分,然后递归地对这两部分进行排序。时间复杂度平均为O(n log n),最坏情况下为O(n^2)。 - **归并排序(Merge Sort)**:将数组分成两半,分别排序后再合并。时间复杂度为O(n log n)。 2. **搜索算法**: - **线性搜索(Linear Search)**:从数组的第一个元素开始,逐个检查直到找到目标元素。时间复杂度为O(n)。 - **二分搜索(Binary Search)**:在有序数组中,通过反复将搜索范围减半来查找目标元素。时间复杂度为O(log n)。 3. **图算法**: - **深度优先搜索(DFS)**:从图的某个顶点开始,访问所有可达的顶点。时间复杂度为O(V + E),其中V是顶点数,E是边数。 - **广度优先搜索(BFS)**:从图的某个顶点开始,逐层访问所有可达的顶点。时间复杂度为O(V + E)。 - **迪杰斯特拉算法(Dijkstra's Algorithm)**:用于计单源最短路径。时间复杂度为O(V^2),使用优先队列优化后可达到O((V + E) log V)。 - **弗洛伊德算法(Floyd-Warshall Algorithm)**:用于计所有顶点对之间的最短路径。时间复杂度为O(V^3)。 4. **动态规划**: - **斐波那契数列**:通过递归或迭代计斐波那契数列。时间复杂度分别为O(2^n)和O(n)。 - **背包问题**:通过动态规划解决0/1背包问题。时间复杂度为O(nW),其中n是物品数量,W是背包容量。 5. **数据结构相关算法**: - **堆排序(Heap Sort)**:利用堆这种数据结构进行排序。时间复杂度为O(n log n)。 - **哈希表操作**:插入、查找和删除操作平均时间复杂度为O(1)。 这些算法在不同的应用场景中各有优劣,选择合适的算法可以显著提高程序的效率和性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值