YOLO11改进 | Head | 增加网络结构增强小目标检测能力【独家创新——附结构图】

秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


本文给大家带来的教程是将修改YOLO11的网络结构来增强其特征融合能力。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。 

专栏地址:YOLO11入门 + 改进涨点——点击即可跳转 欢迎订阅

目录

1. 原理

2. YOLO11

3. 修改主干网络

4.修改后的网络结构图

5. 完整代码分享

### 修改YOLO神经网络架构自定义模型结构 #### 了解现有YOLO版本差异 不同版本的YOLO在网络设计上存在显著区别。相比于YOLOv8,新的改进版主要将C2f组件替换为C3k2,并引入了注意力机制模块C2PSA来增强特征提取能力[^2]。 #### 定义新层和模块 为了创建定制化的YOLO架构,可以先基于现有的框架实现新增加的功能块。比如,在PyTorch中可以通过继承`nn.Module`类来自行编写特定功能的新层: ```python import torch.nn as nn class C3k2(nn.Module): def __init__(self, in_channels, out_channels): super(C3k2, self).__init__() # 实现具体的卷积操作逻辑 def forward(self, x): pass class C2PSA(nn.Module): def __init__(self, channels): super(C2PSA, self).__init__() # 添加注意力机制的具体实现细节 def forward(self, x): pass ``` #### 调整主干网路配置文件 对于Darknet风格的YOLO系列来说,通常会有一个`.cfg`格式的配置文档用于描述整个网络拓扑关系。当要调整或扩展原有结构时,则需编辑此文件中的相应部分以反映所作更改。例如增加一层C3k2单元到某阶段后应如下所示更新路径下的.cfg文件: ``` [convolutional] size=1 stride=1 pad=1 filters=x activation=y batch_normalize=z [C3k2] filters=a ... ``` #### 集成至检测头部 最后一步涉及对预测头(Prediction Head)做出适当变动以便更好地适应前面所做的改动。这可能意味着重新设置锚框数量、尺度以及类别数目等超参数;也可能涉及到更复杂的变换如多尺度融合策略的应用。 通过上述方法能够有效地构建出具有独特特性的YOLO变体,从而满足特定应用场景的需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kay_545

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值