linear independence
Suppose A is m by n with m < n,Then here are nonzero solutions to Ax = 0(more unknown than equations)
Reason:There will be free varables!
vectors x1, x2, …xn are independent if no combinations gives zero vector(except the zero comb, all ci = 0)
c1x1+c2x2+...+cnxn!=0c1x1+c2x2+...+cnxn!=0
Repeat,when V1,…Vn are columns of A.They are independent if nullspace of A is {zero vector}. r = n, no free variables
They are dependent if AC = 0 for some no zero C.r < n, yes, free variables
Spanning a space
vectors v1,…vn span a space means the space consist of all combs of those vectors.
Basis and dimension
Basis for a space is a sequence of vectors v1, v2, … vn with 2 properties:
1.They are independent
2.They span the space
Example:
Space is R3R3
basis is:
⎡⎣⎢100⎤⎦⎥+⎡⎣⎢010⎤⎦⎥+⎡⎣⎢001⎤⎦⎥[100]+[010]+[001]
Rn,Rn,n vectors give basis if the n x n matrix(with those columns) is invertible
basis is not unique,there are many many basis,for example,when the spae is R3R3,any independent vectors which span the space are basis.but they all share one property,what property?
They all have the same number of vectors!This number is the dimension of the space
!!!rank(A) = pivot numbers = dimension(C(Aa))
!!!dim(C(A)) = r
!!!dim(N(A)) = count of free variables = n - r