MIT线性代数笔记-第九讲

本文探讨了线性代数的基本概念,包括线性独立性的定义及其判断方法,向量组如何构成空间,以及基和维数的概念。通过具体实例解释了这些概念的实际应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

linear independence

Suppose A is m by n with m < n,Then here are nonzero solutions to Ax = 0(more unknown than equations)
Reason:There will be free varables!

vectors x1, x2, …xn are independent if no combinations gives zero vector(except the zero comb, all ci = 0)
c1x1+c2x2+...+cnxn!=0c1x1+c2x2+...+cnxn!=0

Repeat,when V1,…Vn are columns of A.They are independent if nullspace of A is {zero vector}. r = n, no free variables
They are dependent if AC = 0 for some no zero C.r < n, yes, free variables

Spanning a space

vectors v1,…vn span a space means the space consist of all combs of those vectors.

Basis and dimension

Basis for a space is a sequence of vectors v1, v2, … vn with 2 properties:
1.They are independent
2.They span the space

Example:
Space is R3R3
basis is:
100+010+001[100]+[010]+[001]

Rn,Rn,n vectors give basis if the n x n matrix(with those columns) is invertible

basis is not unique,there are many many basis,for example,when the spae is R3R3,any independent vectors which span the space are basis.but they all share one property,what property?
They all have the same number of vectors!This number is the dimension of the space

!!!rank(A) = pivot numbers = dimension(C(Aa))
!!!dim(C(A)) = r
!!!dim(N(A)) = count of free variables = n - r

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值