Bases of new vector spaces
M = all 3 * 3 matrices(add and multiply)
subspace:
1.upper triangular matrices
2.symmetric matrices,dimS = 6
Basis for M = all 3 * 3’s,共计9个,如下所示:
⎡⎣⎢100000000⎤⎦⎥and⎡⎣⎢000100000⎤⎦⎥…⎡⎣⎢000000001⎤⎦⎥[100000000]and[010000000]…[000000001]
S⋂US⋂U = symm and upper triangular = diagonal 3 * 3’s,dim(S⋂US⋂U) = 3
S+US+U= all combs of things in S and U = all 3* 3’s
总结一下:
dim(S + U) = 9
dimS = 6
dimU = 6
dim(S⋂US⋂U) + dim(S + U) = dimS + dimU
Rank one matrices
[1248510]−>[12][145][1452810]−>[12][145]
dimC(A) = rank = dimC(ATAT)
for every rank one matrice A, we have A = UVTUVT
M = 5 * 17 matrices,would subset of rank 4 matrices form a subspace?No
would subset of rank 1 matrices form a subspace?No
another example
s = all v in R4R4 with v1 + v2 + v3 + v4 = 0
也就是,s = null space of A = [1 1 1 1]
rank = 1
dimN(A) = n - r = 3
dimN(ATAT) = 0
C(A) = R1R1
Basis:
⎡⎣⎢⎢⎢−1100⎤⎦⎥⎥⎥and⎡⎣⎢⎢⎢−1010⎤⎦⎥⎥⎥and⎡⎣⎢⎢⎢−1001⎤⎦⎥⎥⎥[−1100]and[−1010]and[−1001]
Small world graphs
Graph = {nodes, edges}
想象成人际关系网路,每个人为一个节点,人与人之间的关系为边,研究表明,人与人之间的最短路径长度不会超过6.这就是小世界图。