MIT线性代数笔记-第十一讲

本文探讨了3x3矩阵空间及其子空间的概念,包括上三角矩阵与对称矩阵的基础,以及秩一矩阵的特性与分解。通过实例展示了如何求解矩阵空间的维度和基础,并分析了秩一矩阵的行列式表示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Bases of new vector spaces

M = all 3 * 3 matrices(add and multiply)

subspace:
1.upper triangular matrices

2.symmetric matrices,dimS = 6

Basis for M = all 3 * 3’s,共计9个,如下所示:
100000000and000100000000000001[100000000]and[010000000]…[000000001]

SUS⋂U = symm and upper triangular = diagonal 3 * 3’s,dim(SUS⋂U) = 3

S+US+U= all combs of things in S and U = all 3* 3’s

总结一下:
dim(S + U) = 9
dimS = 6
dimU = 6
dim(SUS⋂U) + dim(S + U) = dimS + dimU

Rank one matrices

[1248510]>[12][145][1452810]−>[12][145]
dimC(A) = rank = dimC(ATAT)
for every rank one matrice A, we have A = UVTUVT

M = 5 * 17 matrices,would subset of rank 4 matrices form a subspace?No
would subset of rank 1 matrices form a subspace?No

another example
s = all v in R4R4 with v1 + v2 + v3 + v4 = 0
也就是,s = null space of A = [1 1 1 1]
rank = 1
dimN(A) = n - r = 3
dimN(ATAT) = 0
C(A) = R1R1
Basis:
1100and1010and1001[−1100]and[−1010]and[−1001]

Small world graphs

Graph = {nodes, edges}
想象成人际关系网路,每个人为一个节点,人与人之间的关系为边,研究表明,人与人之间的最短路径长度不会超过6.这就是小世界图。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值