MIT线性代数笔记-第二十四b讲

本文解析了线性代数中的习题,包括向量的投影矩阵计算、特征值与特征向量的求解、使用最小二乘法进行线性拟合等内容,并探讨了矩阵可逆性的条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这一节课是习题课

1.向量
a=212a=[212]的投影矩阵P为?
直接套公式,P = aaTaTaaaTaTa

P = 19212[212]=1942421242419[212][212]=19[424212424]

P的eigenvalue和eigenvector为?
λ=0,0,1(rank101trace00)λ=0,0,1(由rank为1,得出两个0,1由trace−0−0得到)
特征向量为a

如何求uk+1=Puk(PP)uk+1=Puk(此处的P即为上面求的的P)
u0=990u0=[990]
u1=Pu0=aaTu0aTa=3a=636u1=Pu0=aaTu0aTa=3a=[636]

uk=Pku0=Pu0=636uk=Pku0=Pu0=[636]

2.使用Least Square进行线性拟合
这里写图片描述
这里写图片描述

3.已知a1a1,如何让a2a2a1a1正交
这里写图片描述

4.4*4矩阵,有λ1,λ2,λ3,λ4λ1,λ2,λ3,λ4
什么情况下矩阵可逆?任何一个λλ不等于0
这里写图片描述
这里写图片描述

5.一阶方程
这里写图片描述
这里写图片描述

6.已知A4A4,求A3A3的投影矩阵P
这里写图片描述
直接套公式

A3A3的eigenvalue和eigenvector?
这里写图片描述

一个需要些技巧的问题.如何求出A4A4的投影矩阵?
求出A4A4的det,不等于0,所以A4A4非奇异,即P = I

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值