这一节课是习题课
1.向量
a=⎡⎣⎢212⎤⎦⎥a=[212]的投影矩阵P为?
直接套公式,P = aaTaTaaaTaTa
P = 19⎡⎣⎢212⎤⎦⎥[212]=19⎡⎣⎢424212424⎤⎦⎥19[212][212]=19[424212424]
P的eigenvalue和eigenvector为?
λ=0,0,1(由rank为1,得出两个0,1由trace−0−0得到)λ=0,0,1(由rank为1,得出两个0,1由trace−0−0得到)
特征向量为a
如何求uk+1=Puk(此处的P即为上面求的的P)uk+1=Puk(此处的P即为上面求的的P)
u0=⎡⎣⎢990⎤⎦⎥u0=[990]
u1=Pu0=aaTu0aTa=3a=⎡⎣⎢636⎤⎦⎥u1=Pu0=aaTu0aTa=3a=[636]
uk=Pku0=Pu0=⎡⎣⎢636⎤⎦⎥uk=Pku0=Pu0=[636]
2.使用Least Square进行线性拟合
3.已知a1a1,如何让a2a2与a1a1正交
4.4*4矩阵,有λ1,λ2,λ3,λ4λ1,λ2,λ3,λ4
什么情况下矩阵可逆?任何一个λλ不等于0
5.一阶方程
6.已知A4A4,求A3A3的投影矩阵P
直接套公式
A3A3的eigenvalue和eigenvector?
一个需要些技巧的问题.如何求出A4A4的投影矩阵?
求出A4A4的det,不等于0,所以A4A4非奇异,即P = I