MIT线性代数笔记-第二十五讲

本文详细探讨了对称矩阵的特点,包括其特征值为实数和特征向量正交的性质,并介绍了如何通过主元判断特征值的正负。此外还讨论了在复数情况下对称矩阵的性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Symmetric matrices

对称矩阵有什么特点?主要是以下两个性质:
1.特征值为实数
2.特征向量正交,或者可以通过选择正交(当λλ值重复时,则可以在一个平面中选择两个垂直的特征向量)

我们知道,普通情况下,当A有n个独立的特征向量时,可以表示为A=SΛS1A=SΛS−1,那么当A为对称矩阵时呢?A=QΛQ1=QΛQT(Q)A=QΛQ−1=QΛQT(其中Q为所有列都标准正交的矩阵)

为什么对称矩阵的特征值为实数?

首先我们有:Ax=λxAx=λx
然后,我们做共轭处理(这里实际是假设A的特征值为复数):Axˇ=λˇxˇ>xˇTAT=xˇTλˇ>xˇTA=xˇTλˇAxˇ=λˇxˇ−>xˇTAT=xˇTλˇ−>xˇTA=xˇTλˇ(每个矩阵,如果有一个特征值为a + bi,那么必有对应的共轭复数a - bi)
我们对这个式子两边乘以xx,得:xˇTAx=xˇTλˇx,我们再对Ax=λxAx=λx两边乘以xˇ,得xˇTAx=λxˇTxxˇTAx=λxˇTx
于是,将两个式子对比,有λˇ=λλˇ=λ,所以λλ为实数

我们得出λλ为实数有一个前提,那就是xˇTxxˇTx不等于0,我们来看看它是什么形式
这里写图片描述
由此,我们也知道了一个复数向量乘以其共轭向量的转置,得到的必定大于0

之前我们推导的前提为A为实对称矩阵,那么A为复数矩阵呢?
我们知道,好的矩阵有两个性质:
1.λλ为实数
2.特征向量正交
满足此性质的为A=AT()A=AT(实数情况下)A=AˇT()A=AˇT(复数情况下)

再来看看A=QΛQTA=QΛQT
这里写图片描述
由这个等式,可以知道每个对称矩阵都是互相正交的投影矩阵的组合

当我们知道对称矩阵的特征值为实数时,我们就想知道这些特征值到底为正数还是负数(之前的课里讲过,微分方程以及幂方程的收敛性都与λλ有关,因此它的正负号很重要),那么我们应该如何得知?答案是通过主元(即pivot)!!!

引入一个定理:
如果A是对称矩阵,则它的主元符号与特征值符号相同,数目也相同

Positive Definite Matrices

正定矩阵的性质:
对称矩阵且主元,特征值和所有子行列式(需要检查n个)都为正数

为什么行列式要检查所有n个子行列式?看看这个例子:
[1003][−100−3]
行列式为整数,但是显然不是正定矩阵,因此我们要检查-1,4,发现-1不满足正数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值