MIT线性代数笔记-第二十七讲

本文介绍了判断二阶及三阶矩阵是否为正定矩阵的方法,包括利用特征值、子行列式、主元以及二次型表达式等手段。通过具体例子说明了如何应用这些方法,并解释了正定矩阵与椭圆的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

判断一个矩阵是否为正定矩阵

[abbc][abbc]
以二阶矩阵A为例,判断是否为正定矩阵的条件为:
1.λ1>0,λ2>0λ1>0,λ2>0(判定特征值)
2.a>0,acb2>0a>0,ac−b2>0(判定所有子行列式)
3.a>0,acb2a>0a>0,ac−b2a>0(判定所有主元)
4.xTAx>0()xTAx>0(新条件,也是最重要的一条)

一个半正定矩阵的例子,之前我们是通过主元,行列式,特征值来判断
这里写图片描述

现在来看看如何用xTAxxTAx来判断一个矩阵是否为正定矩阵:
这里写图片描述

之前c为18时得到的是半正定矩阵,现在令c=20,得到:
这里写图片描述

这里写图片描述

以上将f(x,y)表示为平方和的形式的方法为配方法,配方法中的系数并不是偶然的,可以通过消元法得到:
这里写图片描述
可以看到,2即为主元,3即为消元法中的倍数。因此我们也知道了为什么主元都大于0矩阵就是正定矩阵,因为主元即为平方和的系数

也可以从微分的角度看:
这里写图片描述
二阶微分矩阵为正定矩阵->矩阵A为正定矩阵

看一个3阶矩阵的例子:
这里写图片描述

由于三个主元都大于0,于是我们知道平方项的系数都大于0,此矩阵必为正定矩阵

总结:
椭圆为正定矩阵,双曲线为非正定矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值