判断一个矩阵是否为正定矩阵
[abbc][abbc]
以二阶矩阵A为例,判断是否为正定矩阵的条件为:
1.λ1>0,λ2>0λ1>0,λ2>0(判定特征值)
2.a>0,ac−b2>0a>0,ac−b2>0(判定所有子行列式)
3.a>0,ac−b2a>0a>0,ac−b2a>0(判定所有主元)
4.xTAx>0(新条件,也是最重要的一条)xTAx>0(新条件,也是最重要的一条)
一个半正定矩阵的例子,之前我们是通过主元,行列式,特征值来判断
现在来看看如何用xTAxxTAx来判断一个矩阵是否为正定矩阵:
之前c为18时得到的是半正定矩阵,现在令c=20,得到:
以上将f(x,y)表示为平方和的形式的方法为配方法,配方法中的系数并不是偶然的,可以通过消元法得到:
可以看到,2即为主元,3即为消元法中的倍数。因此我们也知道了为什么主元都大于0矩阵就是正定矩阵,因为主元即为平方和的系数
也可以从微分的角度看:
二阶微分矩阵为正定矩阵->矩阵A为正定矩阵
看一个3阶矩阵的例子:
由于三个主元都大于0,于是我们知道平方项的系数都大于0,此矩阵必为正定矩阵
总结:
椭圆为正定矩阵,双曲线为非正定矩阵