MIT线性代数笔记-第三十二讲

本文总结了线性代数中的关键概念,包括特征值与特征向量、对称矩阵特性、正定矩阵、相似矩阵、奇异值分解等内容,并通过具体例题详细解释了这些概念的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第六章测验的习题课

总结的几点:
1.特征值和特征向量。如何求特征值?AλIA−λI(也可以使用另外一些办法,如矩阵的性质-奇异必有0,如特征值乘积等于行列式等等)
2.微分方程
3.对称矩阵的特性。主要是特征值为实数,特征向量充足且正交,可以构建特征向量矩阵,其为正交矩阵.于是原矩阵可以表示为:A=QΛQTA=QΛQT
4.正定矩阵。特征值为整数,子行列式为整数,主元为整数等等性质
5.相似矩阵。B=M1AMB=M−1AM.重要性质,特征值相等
6.奇异值分解。A=UVTA=U∑VT

第一道题(微分方程)

这里写图片描述

A为奇异矩阵,得出λ1=0λ1=0,由于A为反对称矩阵,λ2,λ3λ2,λ3为复数

通过对u(t)的观察,不难看出它是一个周期函数
问,什么时候u(t)回到初始值?
这里写图片描述

一个重要性质:
满足AAT=ATAAAT=ATA的矩阵,它的特征向量正交
那么满足这个性质的矩阵有哪些呢?对称对阵、反对称矩阵、正交矩阵(例如Q)

回到问题。如何求eAteAt?(因为我们知道u(t)=eAtu(0)u(t)=eAtu(0), 所以我们对eAteAt感兴趣)
我们知道,假设A有足够多的特征向量(这个例子中A有3个不同的特征值,特征向量足够),那么A可以对角化,即A可以表示为A=SΛS1A=SΛS−1,那么eAt=SeΛtS1eAt=SeΛtS−1,于是我们可以根据这个公式,求出c和x后代入得到u(t)的矩阵表示

第二道题

这里写图片描述
一未知矩阵A,已知特征值(λ2λ2未知),和特征向量,回答下列问题:
问题1,该矩阵是否对于任意c都可对角化?
是。因为特征向量正交,独立

问题2,矩阵是否对称?
当c为实数时(回忆下对称矩阵的性质,特征值为实数,特征向量正交)

问题3,是否正定?
如果c >= 0,可以是半正定矩阵(由于λ1=0λ1=0,而正定矩阵要求特征值都大于0)

问题4,是否是马尔科夫矩阵?
否。马尔科夫矩阵要求,其中一个特征值为1,其余特征值小于1

问题5,是否为投影矩阵?
当c = 2或者0时。我们知道投影矩阵满足P2=P()P2=P(即再次投影无变化),可得λ2=λ,λ=10λ2=λ,λ=1或0,可以得出c

第三道题(奇异值分解,SVD)

回忆一下SVD的核心公式:A=UVTA=U∑VT,其中U和A为标准正交矩阵(正交且长度为1),为对角矩阵
如何根据这个公式推到出U和V?关键是ATAAATATA和AAT
ATA=(UVT)T(UVT)=(VTUT)(UVT)=V2VT(UVUTU=I,VTV=I)ATA=(U∑VT)T(U∑VT)=(V∑TUT)(U∑VT)=V∑2VT(由于U和V是标准正交矩阵,UTU=I,VTV=I)
AAT=(UVT)(UVT)T=(UVT)(VTUT)=U2UTAAT=(U∑VT)(U∑VT)T=(U∑VT)(V∑TUT)=U∑2UT

通过这两个公式,我们知道V为ATAATA的特征向量矩阵(矩阵分解的公式,A=QQTA=Q∑QT),U为AATAAT的特征向量矩阵,假设σ1,σ2,....σ1,σ2,....为对角矩阵的值,那么σσ对应ATA(AAT)ATA(或者AAT)的特征值的开方,即σ2i=λi(ATA)σi2=λi(ATA)

我们来深刻理解一下A=UVTA=U∑VT这个公式,这个公式实际上的意义是AVi=σiUiAVi=σiUi,即我们可以通过投影矩阵A得到其行空间对应的列空间的向量,而式子中的σiσi为对应的放缩因子(由于投影后的长度可能不一致,因此需要通过一个常数项来缩放)

那么问题来了
这里写图片描述
给定矩阵分解形式如上所示,可以得出A有哪些性质?
可逆。由于σσ不等于0且m = n,因此矩阵可逆

那么下面这个矩阵呢?
这里写图片描述
奇异并且秩为1,dim(N)=1dim(N)=1.

对于这个矩阵,零空间中的向量是什么?
v2v2,回想一下,当σσ为0时,对应的vuv和u我们是在零空间和转置零空间中找到的

第四道题

假设A为对称且正交矩阵,回答下述问题
1.特征值
由于对称,我们知道特征值为实数。由于正交矩阵,有QTQ=IQTQ=I,而矩阵的转置特征值是不变的,可以得到|λ|=1|λ|=1,总结即为,λλ为1或-1
这里写图片描述
也可以这样想,正交矩阵不改变向量的模的大小

2.是否为正定矩阵?不是

3.是否可对角化?是。正交矩阵都可对角化(记得之前的结论么,正交矩阵的特征向量矩阵正交)

4.是否可逆?是。因为是正交矩阵,列向量独立

5.12(A+I)?12(A+I)是否为投影矩阵?
回想下,投影矩阵的性质是什么?对称,显然满足,那么来看看P2=PP2=P满不满足
14(A2+2A+I)=14(I+2A+I)=12A+IAA=AT=A1,ATA=I)14(A2+2A+I)=14(I+2A+I)=12A+I(由于A对称且正交,因此A=AT=A−1,可以得到ATA=I),得证
此矩阵的特征值是什么?0和1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值