MIT线性代数笔记-第三十三讲

本文探讨了矩阵的左逆、右逆及伪逆的概念,分析了这些逆存在的条件及应用,并介绍了通过奇异值分解求解伪逆的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

4个子空间

这里写图片描述

左逆

通常,我们说的逆为两边可逆,即
AA1=I=A1AAA−1=I=A−1A
这种情况下,r = m = n(矩阵A也叫作满秩矩阵)

上面是完美的情况,来看看不完美的情况
列满秩,r = n,列向量独立,零空间为零向量。并且Ax=bAx=b有零或者一个解(由于,r = n,而m > n,因此对b有限制).我们来看一个式子:
(ATA)1ATA=I(ATA)−1ATA=I,说明A有A1leftAleft−1,即左逆,Aleftnm,AmnAleft为n∗m,A为m∗n

需要注意的一点是:这个式子中的ATAATA为最小二乘法中的关键

右逆

与左逆对应的是右逆
这里写图片描述

行满秩。转置零空间为零向量。Ax=bAx=b有无穷解(对b无限制且自由向量有n - m个).可以得到A的右逆公式为:
AAT(AAT)1=IAAT(AAT)−1=I

伪逆

我们先看看左逆和右逆的两个公式
左逆:(ATA)1ATA=I(ATA)−1ATA=I,我们将式子变换一下
A(ATA)1ATA(ATA)−1AT,回忆一下,这个为投影到列空间的投影矩阵

右逆:AAT(AAT)1=IAAT(AAT)−1=I
AT(AAT)1AAT(AAT)−1A,这个为投影到行空间的投影矩阵

再看看这张图
这里写图片描述

假设x在行空间中,那么AxAx在列空间,它们的关系是一一对应的
之前我们的视角是从行空间到列空间,那么列空间到行空间呢?这就是伪逆,表示如下:
y=A+(Ay)y=A+(Ay)

如何证明x和Ax为一一对应的?
这里写图片描述
假设不对应,找出矛盾

伪逆有什么用?
左逆和右逆存在局限性,分别需要列满秩(如果不符合,那么ATAATA为奇异矩阵,不可求逆)或者行满秩。而伪逆没有限制

那么问题来了,如何求A+A+?
通过奇异值分解
这里写图片描述
公式为A+=V+UT(VT=V1,+nm,mn)A+=V∑+UT(需要注意的是VT=V−1,∑+的纬度为n∗m,而不是m∗n)

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值