4个子空间
左逆
通常,我们说的逆为两边可逆,即
AA−1=I=A−1AAA−1=I=A−1A
这种情况下,r = m = n(矩阵A也叫作满秩矩阵)
上面是完美的情况,来看看不完美的情况
列满秩,r = n,列向量独立,零空间为零向量。并且Ax=bAx=b有零或者一个解(由于,r = n,而m > n,因此对b有限制).我们来看一个式子:
(ATA)−1ATA=I(ATA)−1ATA=I,说明A有A−1leftAleft−1,即左逆,Aleft为n∗m,A为m∗nAleft为n∗m,A为m∗n
需要注意的一点是:这个式子中的ATAATA为最小二乘法中的关键
右逆
与左逆对应的是右逆
行满秩。转置零空间为零向量。Ax=bAx=b有无穷解(对b无限制且自由向量有n - m个).可以得到A的右逆公式为:
AAT(AAT)−1=IAAT(AAT)−1=I
伪逆
我们先看看左逆和右逆的两个公式
左逆:(ATA)−1ATA=I(ATA)−1ATA=I,我们将式子变换一下
A(ATA)−1ATA(ATA)−1AT,回忆一下,这个为投影到列空间的投影矩阵
右逆:AAT(AAT)−1=IAAT(AAT)−1=I
AT(AAT)−1AAT(AAT)−1A,这个为投影到行空间的投影矩阵
再看看这张图
假设x在行空间中,那么AxAx在列空间,它们的关系是一一对应的
之前我们的视角是从行空间到列空间,那么列空间到行空间呢?这就是伪逆,表示如下:
y=A+(Ay)y=A+(Ay)
如何证明x和Ax为一一对应的?
假设不对应,找出矛盾
伪逆有什么用?
左逆和右逆存在局限性,分别需要列满秩(如果不符合,那么ATA为奇异矩阵,不可求逆ATA为奇异矩阵,不可求逆)或者行满秩。而伪逆没有限制
那么问题来了,如何求A+A+?
通过奇异值分解
公式为A+=V∑+UT(需要注意的是VT=V−1,∑+的纬度为n∗m,而不是m∗n)A+=V∑+UT(需要注意的是VT=V−1,∑+的纬度为n∗m,而不是m∗n)