Description
Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node’s key.
- The right subtree of a node contains only nodes with keys greater than the node’s key.
- Both the left and right subtrees must also be binary search trees.
Example 1:
Input:
2
/ \
1 3
Output: true
Example 2:
5
/ \
1 4
/ \
3 6
Output: false
Explanation: The input is: [5,1,4,null,null,3,6]. The root node's value
is 5 but its right child's value is 4.
问题描述
给定二叉树, 判断它是否是有效的二叉排序树
二叉排序树定义如下
- 一个节点的左子树中的所有节点的键比该节点的键小
- 一个节点的右子树中的所有节点的键比该节点的键大
- 左右子树也是有效的二叉排序树
问题分析
解法1
class Solution {
public boolean isValidBST(TreeNode root) {
if (root == null) return true;
Deque<TreeNode> stack = new LinkedList();
Integer prev = null;
while(root != null || !stack.isEmpty()){
while(root != null) {
stack.push(root);
root = root.left;
}
root = stack.pop();
if(prev != null && root.val <= prev) return false;
prev = root.val;
root = root.right;
}
return true;
}
}
解法2
class Solution {
public boolean isValidBST(TreeNode root) {
return isValidFunc(root, Long.MIN_VALUE, Long.MAX_VALUE);
}
public boolean isValidFunc(TreeNode root, long min, long max){
if(root == null) return true;
if(root.val <= min || root.val >= max) return false;
return isValidFunc(root.left, min, root.val) && isValidFunc(root.right, root.val, max);
}
}