491-Increasing Subsequences

本文介绍了一种使用回溯法解决递增子序列查找问题的方法。该方法能够找到给定整数数组中所有不同的递增子序列,且子序列长度至少为2。文章通过示例说明了算法的工作原理及实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

Given an integer array, your task is to find all the different possible increasing subsequences of the given array, and the length of an increasing subsequence should be at least 2 .


Example:

Input: [4, 6, 7, 7]
Output: [[4, 6], [4, 7], [4, 6, 7], [4, 6, 7, 7], [6, 7], [6, 7, 7], [7,7], [4,7,7]]

Note:

  1. The length of the given array will not exceed 15.
  2. The range of integer in the given array is [-100,100].
  3. The given array may contain duplicates, and two equal integers should also be considered as a special case of increasing sequence.

问题描述

给定一个整数数组, 你的任务是找出数组中所有可能的不同的递增子序列, 并且递增子序列的长度大于等于2


问题分析

回溯法


解法

public class Solution {
    public List<List<Integer>> findSubsequences(int[] nums) {
        List<List<Integer>> res = new LinkedList();

        helper(new LinkedList(), 0, nums, res);

        return res; 
    }
    private void helper(LinkedList<Integer> list, int index, int[] nums, List<List<Integer>> res){
        if(list.size() > 1) res.add(new LinkedList(list));
        //注意这里, used用于避免出现相同的序列
        Set<Integer> used = new HashSet();
        for(int i = index;i < nums.length;i++){
            if(used.contains(nums[i])) continue;
            if(list.size() == 0 || nums[i] >= list.peekLast()){
                used.add(nums[i]);
                list.add(nums[i]); 
                helper(list, i + 1, nums, res);
                //注意这里
                list.remove(list.size() - 1);
            }
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值