递归的思路

本文深入浅出地介绍了递归的概念,包括方法递归的定义、适用场景及如何编写递归代码。递归主要应用于将大问题分解为相似子问题的情况,并需要明确终止条件。通过递归求解阶乘的例子,详细解释了如何确定终止条件并利用函数自身的调用来解决问题。总结指出,写出递归代码的关键在于明确终止条件和理解函数的语义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

今天给老铁们回顾一下递归的思路以及方法,也是给自己的一个归纳总结。

一、什么是方法递归?

所谓的方法递归,就是在一个方法(函数)执行的内部自己调用了自己的过程,称之为 “递归” 。

递归分为两个子过程:
递过程:函数不断地调用自身,直到走到函数的终止条件,第一阶段结束。
归过程:函数不断地返回的过程。

例如, 我们求 N! 起始条件: N = 1 的时候, N! 为 1. 这个起始条件相当于递归的结束条件. 递归公式: 求 N! ,
直接不好求, 可以把问题转换成 N! => N * (N-1)!

示例:递归求N的阶乘

public static void main(String[] args) {
    int n = 5;
    int ret = factor(n);
    System.out.println("ret = " + ret);
}
public static int factor(int n) {
    if (n == 1) {
        return 1;
   }
    return n * factor(n - 1); // factor 调用函数自身
}
// 执行结果
ret = 120

二、什么场景下能用递归?

a.一个大问题(这个方法的功能)可以拆分成若干个子问题的解.

b.拆分后的子问题和原问题除了数据规模不同,解决思路完全相同.

c.必须存在递归的终止条件(不会无限拆分下去,一定能走到底~).

(看不懂先看下面(●ˇ∀ˇ●))

三、如何写出递归代码(重点)?

1.先考虑这个函数的终止条件

比如上面的栗子:求N的阶乘。
拿求5的阶乘做例子:
在这里插入图片描述
我们把大问题(5的阶乘)一直拆分到1的时候,问题无法继续拆分下去了,这个子问题就是这个递归的最终条件。
所以我们写代码的时候,可以先把最终条件写上:

if (n == 1) {
        return 1;
   }

2.假设这个函数已经写好了(注意这个方法的语义

在写递归函数的时候,千万不要纠结这个函数内部是如何实现的,而是要注意这个函数有什么功能(假设这个函数别人已经写好了),我们把它当作一个黑盒子,你只是去调用这个函数罢了。

public static int factor(int n)

比如这个函数只能传入一个n,目前我们只能知道这个n是多少,而n的阶乘等于n* [(n-1)!],但是我们并不知道n-1的阶乘是多少,那么就调用这个别人写好的“黑盒子”。这个黑盒子的功能可以实现某个数的阶乘

n * factor(n - 1) // n*黑盒子

说白了就是,把这个factor函数当作别人已经写好了,你只需要关注如何去调用这个方法去辅助你解决问题就可以了!

总结

写出递归其实=终止条件+利用黑盒子去解决剩下的问题,注意传入的参数就可以很快把递归代码写出来(●ˇ∀ˇ●)。老铁们如果有帮助的话记得三连哟~

评论 54
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Killing Vibe

谢谢您的打赏!博主会持续更新

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值