分类算法:集成学习方法与Boosting算法

分类算法:集成学习方法与Boosting算法

在这里插入图片描述

1. 引言

1.1 集成学习的基本概念

集成学习(Ensemble Learning)是一种机器学习策略,它通过构建并结合多个学习器来提高预测性能。这种方法基于一个直观的想法:一群专家的集体决策往往比单个专家的决策更可靠。在集成学习中,这些“专家”就是不同的模型,它们可以是同类型的(如多个决策树),也可以是异类型的(如决策树、神经网络等的组合)。

集成学习主要分为两大类:Bagging和Boosting。Bagging通过有放回的抽样创建多个数据集,然后在每个数据集上训练模型,最后通过投票或平均预测结果来做出最终决策。Boosting则不同,它通过迭代地训练模型,每个模型都专注于前一个模型的错误,从而逐步提高整体性能。

1.2 Boosting算法的历史与重要性

Boosting算法的概念最早由Schapire在1989年提出,他证明了弱学习器(即性能略好于随机猜测的学习器)可以通过Boosting算法转化为强学习器。Adaboost是第一个真正实用的Boosting算法,由Freund和Schapire在1995年提出,它通过调整训练数据的权重来实现模型的迭代训练,使得后续模型更加关注前一模型分类错误的样本。</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kkchenjj

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值