分类算法:集成学习方法与Boosting算法
1. 引言
1.1 集成学习的基本概念
集成学习(Ensemble Learning)是一种机器学习策略,它通过构建并结合多个学习器来提高预测性能。这种方法基于一个直观的想法:一群专家的集体决策往往比单个专家的决策更可靠。在集成学习中,这些“专家”就是不同的模型,它们可以是同类型的(如多个决策树),也可以是异类型的(如决策树、神经网络等的组合)。
集成学习主要分为两大类:Bagging和Boosting。Bagging通过有放回的抽样创建多个数据集,然后在每个数据集上训练模型,最后通过投票或平均预测结果来做出最终决策。Boosting则不同,它通过迭代地训练模型,每个模型都专注于前一个模型的错误,从而逐步提高整体性能。
1.2 Boosting算法的历史与重要性
Boosting算法的概念最早由Schapire在1989年提出,他证明了弱学习器(即性能略好于随机猜测的学习器)可以通过Boosting算法转化为强学习器。Adaboost是第一个真正实用的Boosting算法,由Freund和Schapire在1995年提出,它通过调整训练数据的权重来实现模型的迭代训练,使得后续模型更加关注前一模型分类错误的样本。</