自然语言处理之话题建模:Neural Topic Models:自动编码器与主题建模
自然语言处理基础
文本预处理
文本预处理是自然语言处理(NLP)中至关重要的第一步,它包括多个子步骤,旨在将原始文本转换为机器学习算法可以理解的形式。以下是一些常见的文本预处理技术:
- 分词(Tokenization):将文本分割成单词或短语的序列。
- 转换为小写(Lowercasing):将所有文本转换为小写,以减少词汇表的大小。
- 去除停用词(Stop Words Removal):从文本中移除常见的、不携带语义信息的词汇,如“的”、“是”、“在”等。
- 词干提取(Stemming):将单词还原为其词根形式,减少词汇表的大小。
- 词形还原(Lemmatization):与词干提取类似,但更准确,将单词还原为其基本形式。
- 去除标点符号(Punctuation Removal):标点符号通常不携带语义信息,