多传感器融合系统设计
在上一节中,我们探讨了机器人视觉的基本概念和技术,重点介绍了单传感器在机器人视觉中的应用。然而,单传感器系统往往难以满足复杂环境下的感知需求。因此,多传感器融合技术应运而生,旨在通过集成多种传感器的数据,提高机器人的感知能力和环境理解能力。本节将详细介绍多传感器融合系统的设计原理和方法,包括数据融合的层次、传感器的选择、数据校准与同步、以及融合算法的具体实现。
数据融合的层次
多传感器融合系统的设计首先需要明确数据融合的层次。数据融合通常分为三个层次:数据级融合、特征级融合和决策级融合。
数据级融合
数据级融合是最底层的融合方法,直接在原始数据层面进行融合。这种融合方法能够保留更多的原始信息,但计算复杂度较高,对数据处理的要求也较高。