7. 信息融合层次模型
在多传感器融合系统中,信息融合层次模型是实现高效、准确环境感知的关键框架。信息融合层次模型将融合过程分为多个层次,每一层都有特定的处理任务和数据类型。这种分层处理的方式不仅有助于理解复杂的融合过程,还能提高系统的可扩展性和鲁棒性。本节将详细介绍信息融合层次模型的各个层次及其原理和实现方法。
7.1 低层融合(Data-Level Fusion)
低层融合,也称为数据级融合,是在传感器数据的原始级别进行融合。这一层次的主要目标是减少数据的冗余,提高数据的信噪比,从而改善后续处理的准确性和可靠性。数据级融合通常涉及传感器数据的校准、同步和滤波等操作。
7.1.1 数据校准
数据校准是确保不同传感器的数据在相同参考框架下进行融合的关键步骤。例如,多个相机可能有不同的时间戳或坐标系,需要通过校准将这些数据对齐。
校准示例:相机标定
假设我们有两个相机,分别拍摄同一场景的不同视角。为了将这两个相机的数据融合,需要进行相机标定,以确定它们的内参和外参。