20. 环境感知中的实时数据处理
在环境感知中,实时数据处理是多传感器融合系统的核心组件之一。实时数据处理的目标是在尽可能短的时间内对传感器数据进行处理,以便快速做出决策或采取行动。本节将详细介绍实时数据处理的原理和方法,包括数据预处理、数据融合、数据校正和性能优化等方面。
20.1 数据预处理
数据预处理是实时数据处理的第一步,目的是将原始传感器数据转换为适合进一步处理的格式。这一步骤包括数据滤波、归一化、去噪等操作。
20.1.1 数据滤波
数据滤波用于去除传感器数据中的噪声,提高数据的质量。常见的滤波方法有卡尔曼滤波、中值滤波和低通滤波等。
卡尔曼滤波
卡尔曼滤波是一种递归的滤波方法,适用于处理动态系统的状态估计问题。它通过预测和更新两个步骤来估计系统的状态。
import numpy