自然语言处理之机器翻译:BERT-based Models:BERT在机器翻译中的应用案例
自然语言处理与机器翻译简介
自然语言处理(NLP)是人工智能领域的一个重要分支,专注于使计算机能够理解、解释和生成人类语言。机器翻译(Machine Translation, MT)作为NLP的一个核心应用,旨在自动将文本从一种语言翻译成另一种语言,从而打破语言障碍,促进全球信息的无障碍交流。
自然语言处理的挑战
NLP面临的挑战包括但不限于:
- 语义理解:理解文本的深层含义,包括隐喻、讽刺和情感色彩。
- 上下文相关性:在不同上下文中,同一词汇可能具有不同含义。
- 语法结构:不同语言的语法结构差异,如词序、时态和语态。
- 文化差异:语言中蕴含的文化背景和习俗,对翻译的准确性有重大影响。
机器翻译的发展
机器翻译经历了几个关键阶段:
- 基于规则的机器翻译