在深度学习领域,图像分类是一个经典且重要的任务。近年来,Transformer架构在自然语言处理领域取得了显著成功,逐渐被引入计算机视觉任务。与此同时,ResNet50作为一种经典的卷积神经网络(CNN),在图像分类中表现优异。本文将对这两种模型在自定义数据集上的图像分类效果进行比较。
1. 模型简介
1.1 ResNet50
ResNet50是一个具有50层的深度残差网络,通过引入残差连接来解决深层网络训练中的梯度消失问题。其结构允许网络学习到更复杂的特征,并在多个图像分类任务中表现出色。
1.2 Transformer
Transformer模型最初用于序列数据处理,近年来的Vision Transformer(ViT)则通过将图像分割为多个小块并进行序列处理,成功地将Transformer架构应用于图像分类任务。ViT依赖自注意力机制,能够捕捉长距离依赖关系。
2. 数据集准备
为了进行有效的比较,我们选择了一个自定义数据集,包括不同类别的图像。数据集被划分为训练集和测试集,确保每个类别都有足够的样本以进行有效训练。
3. 实验设置
3.1 超参数设置
- 学习率:我们对两个模型都采用了相似的学习率策略,初始学习率设为0.001,并使用学习率衰减。
- 批量大小:均设置为32。
- 训练轮数:训练共进行50个epoch,观察模型的收敛情况。
3.2 环境设置
所有模型均在相同的硬件环境(GPU)上训练,以确保实验的公平性。