一文彻底搞懂MySQL基础:B树和B+树的区别

本文详细介绍了B树和B+树的原理,包括它们的特点、查找过程以及在MySQL中的应用。B-树允许每个节点有多个子节点,适合内存访问,而B+树所有数据都存储在叶子节点,利于区间查询和磁盘预读。MySQL选择B+树作为索引结构,因其能有效减少磁盘I/O次数,优化查询性能。文章还探讨了存储数据的最小单元、主存和磁盘存取原理,强调了局部性原理在预读策略中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面

大家在面试的时候,肯定都会被问到MySql的知识,以下是面试场景:
面试官:对于MySQL,你对他索引原理了解吗?
我:了解
面试官:MySQL的索引是用什么数据机构的?
我:B+树
面试官:为什么要用B+树,而不是B树?
我:…
面试官:用B+树作为MySql的索引结构,用什么好处?
我:…

B树和B+树是MySQL索引使用的数据结构,对于索引优化和原理理解都非常重要,下面我的写文章就是要把B树,B+树的神秘面纱揭开,让大家在面试的时候碰到这个知识点一往无前,不再成为你的知识盲点!

欢迎关注公众号:「码农富哥」,致力于分享后端技术 (高并发架构,分布式集群系统,消息队列中间件,网络,微服务,Linux, TCP/IP, HTTP, MySQL, Redis), Python 等 原创干货面试指南! 让大家在编程路上少走弯路!

B-树

B-树概述

B-树,这里的 B 表示 balance( 平衡的意思),B-树是一种多路自平衡的搜索树(B树是一颗多路平衡查找树
它类似普通的平衡二叉树,不同的一点是B-树允许每个节点有更多的子节点。下图是 B-树的简化图.

B 树

B-树有如下特点:

  1. 所有键值分布在整颗树中(索引值和具体data都在每个节点里);
  2. 任何一个关键字出现且只出现在一个结点中;
  3. 搜索有可能在非叶子结点结束(最好情况O(1)就能找到数据);
  4. 在关键字全集内做一次查找,性能逼近二分查找;
B树深入

B树由来

定义:B-树是一类树,包括B-树、B+树、B*树等,是一棵自平衡的搜索树,它类似普通的平衡二叉树,不同的一点是B-树允许每个节点有更多的子节点。
B-树是专门为外部存储器设计的,如磁盘,它对于读取和写入大块数据有良好的性能,所以一般被用在文件系统及数据库中。

定义只需要知道B-树允许每个节点有更多的子节点即可(多叉树)。子节点数量一般在上千,具体数量依赖外部存储器的特性。

先来看看为什么会出现B-树这类数据结构。

传统用来搜索的平衡二叉树有很多,如 AVL 树,红黑树等。这些树在一般情况下查询性能非常好,但当数据非常大的时候它们就无能为力了。原因当数据量非常大时,内存不够用,大部分数据只能存放在磁盘上,只有需要的数据才加载到内存中。一般而言内存访问的时间约为 50 ns,而磁盘在 10 ms 左右。速度相差了近 5 个数量级,磁盘读取时间远远超过了数据在内存中比较的时间。这说明程序大部分时间会阻塞在磁盘 IO 上。那么我们如何提高程序性能?减少磁盘 IO 次数,像 AVL 树,红黑树这类平衡二叉树从设计上无法“迎合”磁盘。

平衡二叉树

上图是一颗简单的平衡二叉树,平衡二叉树是通过旋转来保持平衡的,而旋转是对整棵树的操作,若部分加载到内存中则无法完成旋转操作。其次平衡二叉树的高度相对较大为 log n(底数为2),这样逻辑上很近的节点实际可能非常远,无法很好的利用磁盘预读(局部性原理),所以这类平衡二叉树在数据库和文件系统上的选择就被 pass 了。

空间局部性原理:如果一个存储器的某个位置被访问,那么将它附近的位置也会被访问。

我们从“迎合”磁盘的角度来看看B-树的设计。

索引的效率依赖与磁盘 IO 的次数,快速索引需要有效的减少磁盘 IO 次数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值